
The Art of Designing Meaningful Conversations

Reprinted from the Feb 1994 issue of The Smalltalk Report
Vol. 3, No. 5

By: Rebecca J. Wirfs-Brock

In my last column I introduced a framework for developing and describing use cases (see Figure
1). Use cases, scenarios or scripts are roughly synonymous terms for important ways to focus
our design activities. In this column we’ll see how use cases, system/actor conversations, and
supporting object designs fit together. We’ll explore some issues surrounding the development
of these models. We’re still learning about where certain techniques work well and where they
fall short. There are several helpful hints and some pitfalls. First, let’s briefly review this
framework.

what
how

what
how

what
how

what
how

high level description of
business scenario

system/actor
conversation

initial object model

detailed object model

detailed dialogue

A Use Case Design Framework
Figure 1.

Use Case Framework
A high level scenario is a textual description of some process or business transaction that our
system must support. Large system development efforts may generate a wealth of detailed
process descriptions. Less formal designs still benefit from writing high level descriptions of
desirable actor activities.

We prefer to transform these high level descriptions into conversations before we model with
objects. This forces us to separate out what the actor does and expects from our system’s
behavior. We purposely leave out details from conversations that should be recorded elsewhere.
We omit complex conditional logic from conversations (e.g. if this happens and such and so is
true, and x is not, then...) Supporting information belongs in detailed process descriptions or
other design documents. We focus on designing the flow of the conversation between the actor
and our system.

There are two central parts to a conversation: a description of the actor’s inputs to our system,
and a corresponding description of our system’s responses. Together, these ‘side-by-side’
narratives capture a dialog between an actor and our system. We also list alternatives to the main
course. These alternatives represent a reasonably complete list of conditions that object
designers must be able to detect and to design appropriate responses for. We also list
constraints, timing considerations, reasonable behaviors, and other outstanding issues and desired
outcomes (as we think of it) when recording each conversation. Figure 2 shows a sample
conversation for Beginning a Session at a Video Kiosk machine.

Conversation: Begin Session

Actors: Regular Customer of Preferred Customer

Overview: A customer identifies herself to our Video Kiosk application. After she has signed
on, she can rent, reserve, cancel reservations, or preview movies.

Context: The video kiosk application screen is currently displayed.

Actor Action Model Response

Initiate Session
Present greeting
Prompt customer for ID

Enter unique ID
Receive customer info
Validate it

Prompt for permissible actions
Select action

Transfer to selected action

Alternatives:
1. User mis-enters identification
Sign customer on as a guest, after informing her.

2. User’s account is overdue by 30 days or more than $50
Inform user and ask if she wishes to make a payment.

Timing Considerations:
Time out and terminate session if user doesn’t respond in n minutes.

Reasonable defaults/other considerations:
Make it very easy for guest to sign on. They shouldn’t have to identify
themselves in the same way as other customers. (Note, the conversation for
guest’s beginning a session may be shown in another conversation, or it may not,
depending on how different or important it is.)

Figure 2. Beginning a Session

Conversations guide our initial object modeling activities. We develop a high level view of key
objects and their interactions for each system response side of a conversation. We start by
selecting candidate objects according to their roles and stereotypes. If we already have a rough
idea of our objects from previous modeling sessions it makes it easier. We still review these
partially completed objects and our assumption about them before plunging into modeling. If
this is the first time, we obviously spend some time picking out and discussing candidates and
their possible roles.

We use white boards a lot during modeling sessions. We record responsibilities and
collaborations on design cards. We also draw and redraw potential collaboration sequences, wave
our hands, and run through consequences listing pluses and minuses and looking for better ways
to distribute object responsibilities. We construct an object interaction diagram depicting what
each object does and roughly how it collaborates with others. The results of all this activity are a
better understanding of our design and an updated issues list!

Figure 3 illustrates object collaborations for beginning a Video Kiosk session. This diagram
shows a collaboration sequence that supports either a regular or preferred customer. Beginning a
session involves signing on and picking a transaction from among Renting a Movie, Previewing,
and Canceling Reservations and Reserving Movies. Responsibilities were parceled out between a
Session Manager, a Transaction Manager, a Customer and a CustomerDatabase object in this
modeling session. Since this diagram was entered into a computer, it looks more polished than it

actually should. The collaborations aren’t finished. What may look like message names are
rough, and more akin to responsibilities than precise message signatures. We’ve shown
sequences of important collaborations, and also shown responsibilities that the Session Manager
performs itself (collaborations 1, 2, and 5 in the diagram).

Finding the Right Sized Use Case

U/I

0. InitiateSession()

1. presentGreeting()

5. displayActionChoices()

6. initiateTransaction(choice, customer)

4. allowableTransactions():choices

3. readCustomer(id):aCustomer
a Session
Manager

 a
Transaction
Manager

2. uniqueId()

a Customer

Finding the right size for a use case is largely a matter of personal choice. I have carefully laid
out a long string of system/actor events and asked colleagues and design students to split them
into meaningful units. We all try to follow these guidelines:

look for meaningful sequences that form some nameable sub task

don’t look for ‘reusable chunks’ to start

find an all encompassing name to call this activity

clearly name the sub task using a single action name

look for loops or repetitive event sequences

How people chunk tasks together varies widely. Some people have a hard time justifying their
decisions (“it just feels right” isn’t a justification). It really is a matter of how much or how little
detail you can handle, and what hidden assumptions you are making about the underlying
complexity of the task. Working in a team, over time, the group as a whole usually develops a
collective sense of the right size for a use case. The above guidelines are useful hints, not rules.

Dull Conversations
Sometimes conversations that you generate from use cases are too simplistic. This is often the
case with event driven systems. Picking an item off a menu doesn’t often generate an interesting
conversation either. If you have this problem, look at chunking more tasks together. Perhaps
your application isn’t very conversational by nature. An actor may initiate a lot of complex
tasks for your system to work on, but the interactions to get them started may be pretty
straightforward. A command driven monologue isn’t that interesting to talk about. Don’t force
conversations.

Dealing with Slight Variations on a Theme
Actors can be users or other systems. Further distinctions can be made between actors. Some
applications I’ve looked at have dozens of different types of users and dozens of external
systems that they have to connect to. Different actors may need or are privileged to conduct
slightly different dialogs. Different actors, performing even the same task often need to have
slightly different conversations. Wading through all this takes a lot of time. The bottom line, is
that unless a conversation or alternative radically differs from a previously documented one, I
find it perfectly acceptable to just record the differences. Unless it is that different, I don’t
bother building a collaboration for each slight variation on the them either. My goal is to produce
and build designs, not generate lots of paper to wade through. Consequently, I make sure to
record new responsibilities and collaborations on design cards, but don’t necessarily show a lot
of other supporting diagrams if it isn’t warranted.

What Really Goes on During Modeling

I can’t ignore big picture while designing the objects for a particular conversation. I don’t know
anyone who can. Too many side excursions into the weeds can be frustrating. However,
remembering consequences of prior modeling decisions and checking for possible inconsistencies
is extremely important. Consolidating and unifying design is a constant background mental
process that should be allowed to bubble to the surface at times.

For example, if I know what Session Manager should do, I don’t park my understanding of its
other duties elsewhere while designing how to begin a kiosk session. If I did that, I might add to
its pre-existing responsibilities in an inconsistent way.

Showing Model Responses
Typical object collaboration diagrams look either deceptively simple or overly complex. They
don’t reflect the thought or effort that went into producing them. In order to understand their
significance, it is necessary to know what are key objects and what level of detail the designer
intended to model. To find this information, either we need to look at supporting documents
such as emerging class designs, prior conversations, and other supporting evidence. Designers
can also help by walking others through their design. Diagrams alone can’t show the significance
of key design decisions. This is hard to find in class specifications, too. That’s why designers
need to tell us what they thought important.

For example, our CustomerDatabase object isn't a simple minded database interfacer. It doesn’t
just humbly reconstitute customer objects from stored information. Sure, it encapsulates details
of some relational database interface objects. But it is really smart. It detects whether a
customer is typical, preferred or a guest and dynamically builds the right kind of customer object
based on a number of decisions it must make (e.g. is the customer late paying her bill, how many
rentals has she made recently, etc.) You can’t see those interior details unless we showed the
Customer Database object in much further detail on this diagram. However, when we were
focusing on the high level objects and their interactions, we didn’t want to clutter up our
diagrams with too may lower level details.

How Detailed Should an Object Diagram Get?
I used to have a problem showing message sends to self. It seemed like too much detail too early.
Now it doesn’t bother me if it is done sparingly. Designing an object involves deciding what it
does itself as well as all of its collaborations. If you haven’t internalized that you need to send
messages to self to create well-designed objects, you need to show this detail. If you know this,
but your peers still find it confusing, you probably need to show them that detail. Diagram
details are a matter of personal discretion, design team standards, and need to comprehend.
Either too much clutter or too few details can cause problems.

One important thing to note about our begin session collaboration diagram is that we showed
interactions with the user interface as dashed lines. We knew which objects collaborated with the
user interface, but we didn’t know how they collaborated. We purposefully didn’t show this

detail. We did this for several reasons. We wanted to first concentrate on the interactions
between business objects, controllers, service providers, information holders, and the like.

If we ignore the interface details for just a bit, we can plug our design into a variety of different
user interface solutions after understanding our object model. We also wanted to give ourselves
the freedom of exploring potential user interface designs as a separate activity.

We also didn’t want to overly constrain our design with user interface requirements. Employing
this tactic prevents us from embedded detailed quirky understanding of particular user interface
objects. I personally don’t have a big problem with setting aside the user interface details until I
know what the other objects generally have to do. I advise you to worry about the details of that
after the interplay between other objects settle down.

Following this strategy causes some feedback and tuning of both our conversation and the objects
that interact with the user interface when we actually do attend to those details. If we limit the
number of objects that actually interact with user interface objects (which is always a good
design principle to follow), the impact of this fine tuning can be minimized.

In Conclusion
There are open issues about use cases, conversations and object modeling. However, there is a
big payoff in designing this way. Use cases and conversations to guide our design activities.
Tying our model back to conversations, use cases and supporting documentation is one big step
in the right direction. My goal in applying these techniques is always to enhance my abilities to
communicate with non object experts and improve my abilities to produce the right design
solution to the right problem.

