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Abstract. As organizations transition to agile processes, Quality Assurance (QA) 
activities and roles need to evolve. Traditionally, QA activities have occurred late in 
the process, after the software is fully functioning. As a consequence, QA 
departments have been “quality gatekeepers” rather than actively engaged in the 
ongoing development and delivery of quality software. Agile teams incrementally 
deliver working software. Incremental delivery provides an opportunity to engage 
in QA activities much earlier, ensuring that both functionality and important system 
qualities are addressed just in time, rather than too late. Agile teams embrace a 
“whole team” approach. Even though special skills may be required to perform 
certain development and Quality Assurance tasks, everyone on the team is focused 
on the delivery of quality software. This paper outlines 24 patterns for transitioning 
from a traditional QA practice to a more agile process. Six of the patterns are 
completely presented that focus on where quality is addressed earlier in the process 
and QA plays a more integral role. 
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Introduction 

As organizations transition to agile processes, the role of Quality Assurance (QA) needs to 
evolve. Nothing prevents QA from being involved throughout the development process, but 
often this does not happen. Unfortunately, many QA people only become involved late in the 
development process, just before it was necessary to test and release the final product. This 
has been so primarily because of a different mindset between QA in traditional software 
processes and Agile QA. Generally, QA’s primary responsibility is to certify the functionality 
of the application based upon the contract and requirements; usually with black-box tests. 
Most QA groups work independently from the software team. However, in Agile, QA works 
closely with the team on an ongoing and daily basis. 

Not focusing on testing early enough can cause significant problems, delays and rework. 
Correcting functional flaws can be time-consuming. But correcting performance or scalability 
deficiencies can require significant changes and modifications to the system’s architecture. If 
important system qualities are considered and addressed during earlier sprints, significant 
architectural verification could be performed much earlier, preventing significant disruptions 
or delays as architectural flaws are corrected. Agile teams incrementally deliver working 
software. Incremental delivery provides an opportunity to engage in QA activities much 
earlier, ensuring that in addition to functionality, important system qualities can be addressed 
in a timely fashion, rather than at the end of development.  

QA in agile groups can benefit by being more proactive, working to ensure quality at all 
levels of the development process. Consequently, they can and do work closely and 
coordinate between business, management and developers. To be effective, Agile QA teams 
require additional skills to those of a “more traditional” QA team. For example, they often 
need to know how to understand the code, know how to write their own automated suite 
cases, and be involved in all parts of the agile process. 

An important principle in most agile practices is the “Whole Team” concept. It isn’t just 
testers who care about quality. Ideally, agile testing involves a cross-functional agile team, 
with special expertise contributed by testers [CG]. Agile developers write unit tests to 
exercise system functionality. But there is more to quality than unit testing. Therefore having 
QA be a part of the team from the start can help build quality into system and make attention 
to quality part of a more streamlined process. This will help the team to know what system 
qualities are important and how they fit into the process (when to do what for different 
qualities). Another benefit of including QA is that they can help the team understand and 
validate requirements. QA also can help the product owner understand what quality attributes 
should be considered and when. And QA can assist the product owner with the definition of 
done which often needs to incorporate many important system qualities in addition to system 
functionality.  

This paper presents patterns for transitioning from a traditional QA practice to a more agile 
one, where quality is addressed earlier in the process and QA plays a more integral role. 
Although the actions you choose to take can vary depending on your team size, your 
organization and what you value, in general, most of these patterns can be applied to widely 
different contexts. 
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Our patterns are written in the spirit of Edward Deming’s fourteen principles for business 
transformation and improvement [De]. Consequently, our patterns focus on actions for 
improving software quality and integrating QA concerns and roles into the whole team. Our 
focus is not on technical software programming practices. We recognize that programming 
and development practices are vital and can significantly contribute to or detract from 
software quality. But many others have written about programming, design and architectural 
practices while ignoring organizational and QA related improvements and actions that can 
result improving software quality. 

We break our software-related Agile Quality patterns into these categories: fitting quality into 
your process, identifying system qualities, making qualities visible, and being agile at quality 
assurance. This paper will outline twenty-four patlets organized into four categories: knowing 
where quality concerns fit into your process, identifying system qualities, making quality 
visible, and being agile at quality assurance. We expect to evolve and extend these categories 
and patterns over time. 

A patlet is a brief description of a pattern, usually one or two sentences. Additionally, we take 
six of these patlets and write them as patterns for this paper: Integrate Quality, Agile Quality 
Scenarios, Quality Stories, Fold-Out Qualities, Whole Team and Quality Focused Sprint. Our 
patterns are written using a modified version of Takashi Iba’s Patterns 3.0 format [Iba]. 
While similar to the traditional Alexandrian pattern form, the most important differentiation 
of the Pattern Language 3.0 is their orientation towards pattern readers who explicitly use 
pattern to design their own actions in a collaborative environment. Our ultimate goal is to 
turn all patlets into full-fledged patterns. 
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Fitting Quality Into Your Process 

Central to successfully using any QA pattern is knowing where quality concerns might fit 
into your process and the removal of any physical and organizational impediments that 
prevent you from taking action. 

Patlet Name  Description 
Break Down Barriers Tear down the barriers between QA and the rest of the 

development team. Work towards engaging everyone in the 
quality process. 

Integrate Quality  Incorporate QA into your process including a lightweight 
means for describing and understanding system qualities. 

While our patterns focus specifically on quality, others have written patterns about how to 
introduce new ideas and change into organizations [MR]. They are specifically focused on 
actions to garner buy-in to new ideas, to bring groups together, and develop a common shared 
purpose and vision. Unless you also tackle any significant organizational resistance to 
change, it may be difficult to achieve your quality-related goals.  

We view organizational patterns as being complementary to those we write about quality. 
They are critical to consider when attempting any significant change in process and how 
people collaborate.  

Integrate Quality 

“Quality is never an accident; it is always the result of high intention, sincere effort, 
intelligent direction and skillful execution; it represents the wise choice of many 
alternatives.” —William A. Foster 

Generally, QA is not done until after many sprints or way late in the development process. 
Delaying QA testing until after many sprints have been completed can cause a lot of 
problems with work items that were thought to be good enough but weren’t. System quality 
attributes, such as performance or security that are not addressed until way late in the process 
can cause upheaval in the architecture. If important system qualities had been recognized and 
considered during earlier sprints, some of them could have been incorporated at this earlier 
time resulting in less rework. 

How can we incorporate examining important system qualities into our agile process 
and where does QA fit into the process? 

v v v 

Often, QA is overworked and is part of a separate team. QA is often slammed by the forces 
upstream from them and they are constantly in a response mode. Although they’d like to help 
more there just isn’t enough time or people. 

QA can be seen as the obstacle to getting the product out which can often lead to an “us and 
them” mentality between QA and the development team. 

It is important for agile teams to focus on features and important functionalities. Certain 
system qualities might not seem important, as they don’t give the instant gratification of 
showing something useful to the end-user. 
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Many team members do not have a quality focus and often do not understand various system 
qualities. Developers are good at implementing the system based upon the product 
requirements from user stories, while QA has a lot of expertise understanding system 
qualities and how to validate these. 

v v v 

Therefore, as part of your agile process, create ways to understand, describe, develop 
and test for system qualities. This can be done through getting a high level understanding of 
what system qualities are important to your project and providing a means for describing 
them with Quality Scenarios. Work on quality can be included in the product backlog tasks 
and ultimately you can write Quality Stories to help with identifying, testing and validation of 
system qualities. This could include having your QA person with the product owner (PO) to 
identify important qualities and ensure they get included on the backlog for inclusion in 
sprints. 

There are various ways for an agile team to do this. The most important idea is to make QA 
part of the whole team and to integrate quality thinking into your agile mindset. For example, 
if you are practicing Scrum, you would make sure this attention to system quality is part of 
your normal sprint including planning and testing. Figure 1 outlines an example of how you 
might add quality activities and focus to your Scrum process. 

During the envisioning phase, important quality attributes should be considered and 
understood. Then, by working with the product owner, these can be prioritized into the 
backlog for consideration during sprints. During a sprint, any relevant quality tasks will be 
included and QA can assist with the creation of Quality Stories and identify Fold-Out 
Qualities for specific user stories. In addition to the normal functional and acceptance testing, 
the Scrum team will also develop tests to validate the system qualities or ways to monitor 
them through a dashboard. 

 
Figure 1 - Quality in Scrum 
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Identifying Qualities 

An important but difficult task for software development teams is identifying the important 
qualities (non-functional requirements) for a system. Quite often system qualities are 
overlooked or simplified until late in the development process, thus causing time delays due 
to extensive refactoring and rework of the software design required to correct quality flaws. 
The following patlets support Identifying Qualities: 

Patlet Name  Description 
Find Essential 
Qualities 

Brainstorm the important qualities that need to be considered 
and list them for inclusion on the product roadmap. 

Agile Quality  
Scenarios 

Create high-level quality scenarios to examine and understand 
the important qualities of the system. 

Quality Stories Create stories that specifically focus on some measurable 
quality of the system that must be achieved. 

Measureable 
System Qualities 

Specify scale, meter, and values for specific system qualities. 

Fold-out Qualities Define specific quality criteria and attach it to a user story 
when specific, measurable qualities are required for that 
specific functionality. 

Agile Landing Zone Define a “landing zone” that defines acceptance criteria 
values for important system qualities. Unlike traditional 
“landing zones,” an agile landing zone is expected to evolve 
during product development. 

Recalibrate the  
Landing Zone 

Readjust landing zone values based on ongoing measurements 
and benchmarks. 

Agree on Quality 
Targets 

Define landing zone criteria for quality attributes that specify 
a range of acceptable values: minimally acceptable, target and 
outstanding. This range allows developers to make tradeoffs 
to meet overall system quality goals. 

This paper will describe three of these patlets as patterns: Agile Quality Scenarios, Quality 
Stories, and Fold-out Qualities. Agile Quality Scenarios are important to make sure the teams 
can glean important system qualities and understand what is important early on so that these 
qualities are not only understood, but also prioritized and included on the road map and the 
most responsible time. Quality Stories are useful to the team while developing the system for 
prioritizing and including these qualities on the backlog. Sometimes, it is good enough to just 
include some of the important system quality requirements as part of a normal agile user 
story and Fold-out Qualities provides a means for this. 
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Agile Quality Scenarios 
“Quality begins on the inside... then works its way out.” —Bob Moawad 

During sprints, items from the product backlog are taken off and estimated. Often backlog 
items are restricted to functional requirements. From these backlog items scenarios and user 
stories are written to elaborate them so that concrete tasks can be identified and work effort 
estimated. This incrementally helps the project move forward developing functionality. As 
the system evolves, however, there can be many other important system qualities such as 
security, performance, reliability and other qualities that also need attention. Typically these 
requirements have not been identified if a product backlog only includes functional 
requirements.  

How can we get a good understanding and a high level view of the important qualities 
that need to be addressed during the development of the system? 

v v v 

Delaying the consideration and implementation of core system qualities can lead to an 
upheaval of the system tearing up the architecture, possibly requiring a lot of refactorings or 
muddy code. 

It is important to identify what qualities are important for consideration early so that they can 
be prioritized and also help with the “definition of done.” 

It can be hard to understand how qualities affect different parts of the system. Having some 
way to show the important qualities from a high level perspective can be very useful to the 
agile team. 

Agile teams do not like a lot of detailed documentation and prefer lightweight methodologies 
for describing important requirements including system qualities. 

v v v 

Therefore, early on in the process, use a lightweight methodology to create and describe 
high-level quality scenarios that address important non-functional requirements such as 
performance, load, reliability, and security. If you know that certain qualities are an 
important consideration, they can be prioritized as part of the product roadmap and included 
during relevant sprints. As more qualities become apparent, you can create scenarios for them 
as needed. Quality Scenarios can be used in two ways: to drive the design of core aspects of a 
system based on quality concerns, or to capture a concrete scenario to evaluate whether the 
system’s architecture satisfies that particular quality. 

The Quality Scenarios can ultimately be used to create Quality Acceptance Stories to help 
with testing and validation of qualities. Figure 2 is an example template of a high-level 
quality scenario as adapted from the SEI [BCK]. 
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Figure 2 - Quality Scenario 

Quality Scenarios briefly describe how software responds to specific conditions that 
demonstrate one or more system qualities. We use the term system quality (or system quality 
attribute) to mean a non-functional characteristic of a system. These are sometimes called the 
“ilities” after their suffix. 

Here are some common qualities you may wish to write quality scenarios for: 
Performance—the responsiveness of the software. 

Availability—the time that the system is up and running correctly; the length of time 
between failures, or the length of time needed to resume operation after a failure. 

Modifiability—the ability to make changes quickly and cost effectively. 
Portability—the ability of the system to run under different computing environments. 

Usability—the ease of use or ease of training users to interact with the system to 
accomplish a task. 

Security—the ability to resist unauthorized attempts at using or modifying the system. 

You can write quality scenarios to describe desired qualities following a general pattern that 
has these parts: the source of stimulus (or what causes the quality to be exhibited), the 
stimulus (or a brief summary of an action or event), the artifact and environment (what parts 
of the system under what operating conditions), the response (what happens when the system 
reacts), and the response measure (some concrete, tangible result you expect). 

Additionally, give each scenario a meaningful descriptive name. 

Here are two quality scenarios that demonstrate reliability expectations for a forest 
management software system. The software predicts fire danger using historical data and 
current weather reported by sensors. Different scenarios about the same quality can be written 
to show how the system should behave under slightly different conditions. 

Reliability Quality Scenario: 
Predicting Fire Danger when < 80% sensors report. 

The forest ranger requests a fire danger prediction for the entire forest, specifying the 
amount of historical sensor reports to be used. The system will return a prediction for fire 
danger of low, medium, high, or extreme along with a low confidence rating since less 
than 80% of the sensors have been reporting regularly. 
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Reliability Quality Scenario:  
Predicting Fire Danger when 80% or more sensors report. 

The forest ranger requests a fire danger prediction for the entire forest, specifying the 
amount of historical sensor reports to be used. The system will return a prediction for “fire 
danger” of low, medium, high, or extreme, along with a confidence rating of “high” when 
80% or more of the sensors have been reporting regularly. 

 
Example of Quality Scenario:  
 

MAKING A PREDICTION WITH < 80% SENSORS REPORTING 

 

 

 

  

Source of 
Stimulus 

Stimulus Artifact Response Response 
Measure 

User Fire Danger 
Prediction 
Request  

Prediction 
Fire Danger 
Analyzer & 
Sensor DB 

Rating Report generated 
with low confidence level 

Report 
Stored and 
Processed 

Environment: Intermittent sensor reporting 
 

Example of Quality Scenario:  
MAKING A PREDICTION WITH 80% OR > SENSORS REPORTING 

 

 

 

  

Source of 
Stimulus 

Stimulus Artifact Response Response 
Measure 

User Fire Danger 
Prediction 
Request  

Prediction 
Fire Danger 
Analyzer & 
Sensor DB 

Rating Report generated 
with good confidence level 

Report 
Stored and 
Processed 

Environment: Intermittent sensor reporting 
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Quality Stories 
“If you don’t care about quality, you can meet any other requirement.” – Gerald M. Weinberg 

While creating and implementing user stories for functional requirements, you identify 
performance, usability, internationalization, reliability or other non-functional qualities that 
broadly apply to several user stories or across a number features. At other times you may 
have a specific system quality (e.g., increase ETL accuracy by 1%) that needs to be improved 
on, perhaps to achieve a landing zone target. 

How can you make these quality requirements visible to the team and prioritized? 

v v v 

You want to be able to plan for, track and manage the work required as outlined by functional 
user stories on your backlog. While working on these functional requirements, certain 
qualities are needed to complete the implementation or can become known and sometimes 
involve multiple stories. 

The primary focus during sprints is to focus on functional requirements and there is often not 
a lot of time given during estimation for system qualities. Also, some qualities and how they 
affect different parts of the system do not become apparent until the implementation of 
certain functional requirements. 

Although Quality Scenarios are useful to understand and details the importance of important 
system qualities, sometimes they are either too high level or not focused enough to prioritize 
for the team to help know when they are “done.” 

v v v 

Therefore, create separate quality stories and add these to your backlog. An agile user 
story is a short, brief description of a desired feature, told from the perspective of the person 
who desires that capability. They focus on important user functionality usually prioritized by 
product owners. While working on different parts of the system or when important qualities 
need to be prioritized and included in the backlog, create a quality story to represent the 
system qualities. In contrast to normal agile user stories, a quality story is a short, brief 
description of some aspect of system quality that is important to achieve. Your backlog can 
contain both quality-specific and functional user stories. Adding quality-specific stories to 
your backlog makes these quality requirements visible. It also allows the Product Owner to 
prioritize quality-related concerns along with system functionality.  

For example, consider a system that supports payment processing using credit card, banking, 
and PayPal transactions. Initially, you defined several user stories related to different 
payment methods (“as a user I want to pay for my order using my bank account,” “as a user I 
want to pay for my order using a credit card,” “as a user I want to pay for my order using my 
PayPal account,” etc.) and implemented the functionality to support them. Each of these user 
stories has its own acceptance criteria and tests. Now you would like to define a performance 
requirement that spans all types of payment processing transactions. 

You could go back to your original user stories and attach specific performance objective 
acceptance criteria to each. But that doesn’t give you the overall performance picture you 
need. Also, you are willing to accept variations in performance among different payment 
methods as long as your aggregate performance target is achieved. So instead of attaching 
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Fold-Out Qualities to specific stories, you create a separate quality story that represents your 
overall performance target: 

“The system should able to handle x number of payment processing transactions per hour 
under peak operation.” 

When you need to describe qualities that apply to specific functional user stories, you can 
always attach quality acceptance criteria to those user stories (see Fold-Out Qualities). Thus 
in addition to the broader performance requirement that applies across different payment 
methods, you can always define specific performance acceptance criteria for a specific 
payment method, if you so desire. 
 

 
Fold-Out Qualities 
“Now you know the rest of the story”—Paul Harvey 

A user story or feature is considered shippable when it meets the expectations of a product 
owner and has the agreed qualities. Typically a Product owner’s expectations are phrased as 
acceptance test criteria that is technology neutral, and at a high level (e.g. “The user can 
choose to pay by credit card” instead of, “The user can select to pay by credit card by 
clicking on a radio button.”). But how can you define and describe agreed upon system 
qualities that should be exhibited by an implemented story?  

v v v 

Some user stories have explicit system quality-related criteria that are part of accepting it as 
complete. In order for a story to be acceptable it must meet specific performance, usability, 
internationalization, reliability or other non-functional requirements.  

The primary focus during sprints is to focus on functional requirements and there is often not 
a lot of time given during estimation for system qualities. Also, some qualities and how they 
affect different parts of the system do not become apparent until the implementation of 
certain functional requirements. 

v v v 

Therefore, in these situations, create and attach specific quality acceptance criteria to 
the user story. We call these fold-out qualities because they are integral to accepting a user 
story, but they are not necessarily the first acceptance criteria you may identify. They unfold 
as you have deeper conversations about how your system should behave and what qualities it 
should exhibit. While your initial concern is correctly implementing that functionality, 
satisfying a fold-out quality can strongly influence your design and implementation choices. 
So they are important to discuss and reach agreement about. These are often important 
qualities that help describe the definition of done. 

For example, to satisfy the story “as a user I want to pay for my order using a credit card,” 
you might specify a foldout performance quality that you expect, “the system to be able to 
handle 100,000 VISA credit card payment transactions per minute.” 

To uncover additional acceptance criteria related to system qualities desired for this story, 
you can to ask a number of quality-related questions: 
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• Usability: Can I cancel an order placed using a credit card? If so, when? 

• Security: Does the system retain my credit information? If so, can I control how that 
information is retained? 

• Security: Is my credit information protected from unauthorized access and securely 
transmitted? 

• Performance: How fast can I place an order and receive confirmation? When there are 
lots of users? 

• Availability: What happens if the credit card service is unavailable? 

Answering these questions commonly leads to quality acceptance criteria that are attached 
directly attached to the story, such as the requirement for securely transmitting secure credit 
information or meeting specific performance objectives. Sometimes more broadly applicable 
qualities might be identified at the same time. For example, not only should credit card 
information be securely transmitted, but all personal or financial information should be as 
well. In this case, in addition to attaching specific quality acceptance criteria to this story, you 
might also identify several quality-related stories that are added to your backlog as well as 
write a few specific quality scenarios. 

Sometimes, by asking quality-related questions, even new functionality may be identified. 
For example, usability concerns about placing orders can lead to identifying the need to 
cancel and track orders. In this case, new user stories can be written about canceling and 
tracking orders can be written and added to the backlog. 
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Making Qualities Visible 

It is useful for team members to be aware of important system qualities and have them readily 
available. This can be done through quality radiators, similar to what Alistair Cockburn 
describes in making any information radiator—visible tangible things that keep people’s 
attention. Quality radiators, just like other information radiators need to change and get 
adjusted and have new and changing information otherwise they become wallpaper [Co]. The 
following patlets outline ways to make qualities visible: 

Patlet Name  Description 
System Quality 
Dashboard 

Define a dashboard that visually integrates and organizes 
information about the current state of the system’s qualities 
that are being monitored. 

System Quality  
Radiator 

Post a display that people can see as they work or walk by 
that shows information about system qualities and their 
current status without having to ask anyone a question. This 
display might show current landing zone values, quality 
stories on the current sprint or quality measures that the team 
is focused on. 

Qualify the Roadmap Examine a product feature roadmap to plan for when system 
qualities should be delivered. 

Qualify the Backlog Create quality scenarios that can be prioritized on a backlog 
for possible inclusion during sprints. 

Quality Chart Create a chart or listing of the important qualities of the 
system and make them visible to the team; possibly on the 
agile board. 

 
Our goal is to describe all these patlets as patterns in future papers. We include them here for 
understanding of the big picture when becoming more agile at quality. 
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Becoming Agile at Quality 

Agile software development is an iterative and incremental development process. The 
software evolves and adapts to changing requirements. Self-organizing, cross-functional 
teams perform the work. Most agile processes embrace quick responses to change. The 
ability to change and adapt is accomplished through short sprints with flexible planning, short 
delivery and extensive feedback. Agile processes focus on prioritizing the most important 
requirements and elaborating on those requirements just in time. 

In any complex system, there are many different types of testing and monitoring, specifically 
when testing for system quality attributes. QA can play an important role in this effort. The 
role of QA in an Agile Quality team includes: 1) championing the product and the 
customer/user, 2) specializing in performance, load and other non-functional requirements, 3) 
focusing quality efforts (make them visible), and 4) assisting with testing and validation of 
quality attributes. 

For small teams, including a QA expert as part of the team can seem natural and fit into the 
organization without too much pandemonium. However, this might not scale well for larger 
projects that require more and larger interactive teams; i.e. 6 Scrum teams doing a scrum-of-
scrums to deliver an enterprise application. The following patlets support Becoming Agile at 
Quality: 

Patlet Name  Description 
Whole Team Involve QA early on and make QA part of the whole team. 
Quality Focused Sprints Focus on your software’s non-functional qualities by 

devoting a sprint to measuring and improving one or more of 
your system’s qualities. 

QA Product Champion QA works from the start understanding the customer 
requirements. A QA person will collaborate closely with the 
Product owner pointing out important Qualities that can be 
included in the product backlog and also work to make these 
qualities visible and explicit to team members. 

Agile Quality Specialist QA provides experience to agile teams by outlining and 
creating specific test strategies for validating and monitoring 
important system qualities. 

Monitor Qualities QA specifies ways to monitor and validate system qualities. 
Agile QA Tester QA works closely with developers to define acceptance 

criteria and tests that validate these, including defining 
quality scenarios and tests for validating these scenarios. 

Spread the  
Quality Workload 

Rebalance quality efforts by involving more than just those 
who are in QA work on quality-related tasks. Another way to 
spread the work on quality is to include quality-related tasks 
throughout the project and not just at the end of the project. 

Shadow the  
Quality Expert 

Spread expertise about how to think about system qualities 
or implement quality-related tests and quality-conscious 
code by having another person spend time working with 
someone who is highly skilled and knowledgeable about 
quality assurance on key tasks. 

Pair with a  
Quality Advocate 

Have developers work directly with quality assurance to 
complete a quality related task that involves programming. 
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Whole-Team 
“Teamwork makes the dream work.” —Bang Gae 

“The way a team plays as a whole determines its success.” —Babe Ruth 

Traditionally QA teams belong to a separate group. Typically, QA in most organizations has 
not had good access to business stakeholders. As a consequence, they generally prefer a lot of 
documentation and prefer to specify their tests based on detailed written specifications. 
Although QA likes a lot of documentation, the quality of that documentation can be 
inconsistent or outdated. And since testing takes so much effort, QA has traditionally 
preferred to test a fully functioning system in order to minimize re-testing and rework. And 
since QA typically has not been engaged until late in the process, serious time-to-market 
pressures can cause compromises to quality.  

Problems can arise when QA is not part of the development team (creating an us vs. 
them syndrome). How can you better incorporate QA into an agile team? 

v v v 

Wanting to make sure systems qualities are not biased is very important. 

Often there are limited resources and people dedicated to QA.  

QA people have a lot of experience understanding qualities and testing issues. 

QA can be seen as the enemy just looking to find defects rather than helping the team.  

This is a big loss to the team if this expertise and mindset is not utilized until late in the 
software process. 

v v v 

Therefore it is important in Agile Quality Teams to include QA as part of the team from 
the start. When QA is included as part of the agile team from the beginning, QA can help 
everyone on the team understand and validate requirements. QA is also able to assist with the 
definition of done and help product owners understand what quality attributes should be 
considered and when they should be addressed. 

The role of QA shifts from being an outsider on a different team to being a team member on a 
unified “Agile Team.” This transition from “outsider” to “team member” increases the team’s 
overall knowledge about quality. A lot of value is added when QA is part of team from the 
start. They can help to build quality into system throughout the entire development process. 
By being part of the team throughout, QA assists the team by keeping those qualities are 
important visible and to help know when working on specify system qualities best fits into 
the process (when to do what for different qualities).  

Quite often the way QA becomes integrated with an agile team is to assign a QA person 
specifically to the team. This QA person will be part of the daily standups, meet with the 
product owner, support the team with testing efforts, and help identify important qualities and 
help create a Quality Roadmap. 
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Quality-Focused Sprint 
“Quality is not an act, it is a habit.”—Aristotle  

Features don’t make a viable system; rather a viable system is accomplished by focusing on 
features accompanied by paying attention to system qualities. 

You have concentrated on implementing functionality. You are delivering working software 
each sprint. But you are worried that it doesn’t meet the demands of a production 
environment which has more demanding users, higher volumes of data, more transactions and 
more of, well everything. How can you incorporate these other non-functional 
requirements into your system as needed? 

v v v 

Prioritizing and implementing the necessary functionality keeps the project moving forward 
and yields positive feedback from the customer. However, just focusing in functionalities 
doesn’t produce a system that is good enough to be released with specifically if there are 
important security, performance and other qualities that have not been addressed yet. 

On the other hand, focusing too much on certain non-functional requirements can cause some 
premature abstraction and optimization. It can be hard to know what system qualities should 
be focused on during every sprint.  

v v v 

Therefore, take time to focus on your software’s non-functional qualities and devote a 
sprint to measuring and improving one or more of your system’s qualities. Set 
expectations that no new features will be delivered, focusing on a better system for the result. 

If your focus is on performance, then the goal of your sprint should be to identify specific 
areas to improve. Like any other sprint, you need to identify and prioritize work and create a 
backlog. However, the nature of the work in a quality-focused sprint will be different: instead 
of functional stories, you need to identify and prioritize stories about the qualities you are 
trying to improve.  

Depending on what qualities you are working on you perform different tasks. And some of 
these tasks will be easier to estimate than others. 

If you are concerned about performance, you will want to measure current performance 
before tuning critical parts of your system. Although the exact level of performance 
improvements can be hard to predict, you still need to break your quality stories into 
estimable tasks such as measuring current performance, load testing, analyzing system 
hotspots and design rework.  

Improving one quality can impact other system qualities. Implementing usability 
improvements may mean that you revise user-system interactions and rework system APIs. 
Also, it may not be clear what is a “better” user interaction approach until you perform 
usability experiments or a/b testing. 

Thus, the definition of “done” for a Quality Sprint involves more than just implementing and 
verifying improvements. It can also involve measuring the impacts your quality 
improvements have on existing system functionality and potentially revising your quality 
acceptance criteria or Agile Landing Zone. 
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Summary 

This paper outlined core patlets to be considered for transitioning from traditional Quality 
Assurance (QA) to Agile Quality (AQ). This includes both ways of incorporating QA into the 
agile process as well as an agile means to describe and validate important system qualities. A 
few of the patlets were described in this paper using the patterns 3.0 format. Ultimately it is 
the authors plan to write all of these patlets into patterns and weave them into a pattern 
language to help with becoming more Agile at Quality. 
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