The Art of Writing Use

e

Rebecca Wirfs-Brock

: rebecca @ wirfs-brock.com
www.wirfs-brock.com John Schwartz

m Copyright 2001, Wirfs-Brock Associates, Inc. 1 J Ohn @ erfs'brOCk.COm

Goals

The goal of this course is to enable you to

— understand use case models: actors, use cases,
glossaries and use case diagrams

— use three forms of use case descriptions
— write effective use case descriptions
— critique use case descriptions

— relate use cases to business policies, Ul
prototypes and other requirements

— add detail and precision to use case descriptions

m Copyright 2001, Wirfs-Brock Associates, Inc. 2

Agenda

Use Cases, Actors and Glossaries
Exercise 1: Find Use Cases and Actors

Let’s Tell a Story

Exercise 2: Write Use Case Narratives

Scenarios and Conversations: Tips and
Guidelines
Exercise 3: “Clinic” a Scenario
Exercise 4: Write a Conversation

Alternatives: Exceptions and Variations
Exercise 5: Describing Alternatives

m Copyright 2001, Wirfs-Brock Associates, Inc. 3

Scope of Tutorial

Responsibility-
Driven Analysis

Problem Definition
Conceptual Models
Marketing List Process Descriptions

Usage Characteristics

Assumptions & Constraints

Functional & Nonfunctional Requirements
Domain Concepts

Responsibility-
Driven Design

Exploratory Design

Roles, Responsibilities and
Collaborations

State Models

Control Architecture
Candidate Classes

Class Inheritance Hierarchies
Design Level Conversations

Data Models

Usage Model
Actors
Narratives, Scenarios and Conversations
Glossaries: Concepts, Behaviors, etc.
Activity Diagrams

User Navigation Model

Refinement

Decision & delegation models
Refined class definitions
Class and Object Diagrams
Sequence diagrams

State Models

L

Ul Prototype Packages
Candidate Domain Objects Code
c al Object Analysis Contracts
O|\;|]Cgp|ua Candidate Objects Interface Definitions
oaels Information Invariants

Essential Behavior
Responsibilities
Collaborations

Use Cases, Actors and
Glossaries

m Copyright 2001, Wirfs-Brock Associates, Inc. 5

A Context

Values
g)S
& | Process |+| Techniques
N
3
N
$
Principles

m Copyright 2001, Wirfs-Brock Associates, Inc.

Tell a Story

Cover the basics

— Key requirements for your application: use cases,
scalability, etc.

— Glossary can assist

Unfold your story
— Choose the right form

— Choose a level of detail appropriate to your
audience

— Don’t tell everything at once. Reveal details as
needed

— Consider different actors’ perspectives

m Copyright 2001, Wirfs-Brock Associates, Inc. 7

Use Case

Functionality from a particular point-of-view

A collection of task-related activities...
Online Banking Use Cases
making a payment
transferring funds between accounts
reviewing account balances

... describing a discrete “chunk”™ of the system

Use cases describe a system from an external usage
viewpoint

m Copyright 2001, Wirfs-Brock Associates, Inc. 8

Function and Form

The Writing Task The Use Case Form To Use

@nt over@ Narrative

Scenario Conversation
(step by step) | (dialog)

Describe

sequence and
dd details

m Copyright 2001, Wirfs-Brock Associates, Inc. 9

First Form: A Narrative
Make a Payment

The user can make online payments to vendors and
companies known to the bank. Users can apply
payments to specific vendor accounts they have.
There are two typical ways to make payments:
the user can specity a one-time payment for a
specific amount, or establish regular payments
to made on a specific interval such as monthly,
bi1-weekly, or semi-annually.

m Copyright 2001, Wirfs-Brock Associates, Inc. 10

Narrative Form

Free-form text in paragraph format

Describes the intent of the user in performing the use
case

Describes high-level actions of the user during the use
case

Refers to key concepts from the problem domain that
are involved 1n the use case.

m Copyright 2001, Wirfs-Brock Associates, Inc. 11

Second Form: A Scenario

Register Customer With Automatic Activation

1

User enters registration information:

Required information: user name, email address, desired login ID and

password, and confirmation password

One of: account number and challenge data, or ATM # and PIN

Optional: language choice and company

2

3
4
5
6

System checks that password matches confirmation password.
System validates required fields and verifies uniqueness of login ID
System verifies customer activation information.

System creates and activates customer online account.

System displays registration notification.

m Copyright 2001, Wirfs-Brock Associates, Inc. 12

Scenario Form

One particular path through a use case written from the
actor’s point of view

Describes a sequence of events or list of steps to
accomplish

Each step 1s a simple declarative statement with no
branching

May describe:
— Actors and their intentions
— System responsibilities and actions

m Copyright 2001, Wirfs-Brock Associates, Inc. 13

Third Form: A Conversation
Make A Payment

General
Flow

Actor: User

System: Application

user organized by payee category

&fresent list of payment templates to

Select a payment template

ﬁ/}:sent details of selected Payment
Template and recent payment

Aﬁstory to payee

Enter payee notes, amount and
= account
O pt I O n a I Submit payment information

Action

i .

Apply payment to payee
Add new payment to recent
ayment list
display the payment list

Optionally, request Setup Paymen

to Edit Payment Template
Information

Select next function

Goto selected use case

Invoking Another Use Case

Copyright 2001, Wirfs-Brock Associates, Inc.

4+

Multiple
Actions

Conversation Form

One path through a use case that emphasizes
interactions between an actor and the system

Can show optional and repeated actions

Each action can be described by one or more
substeps

May describe:

— Actor actions
— System responsibilities and actions

m Copyright 2001, Wirfs-Brock Associates, Inc. 15

Comparing the Three Forms

Form Strengths Weaknesses

Narrative e Good for high- e Easy to write at too high
level summaries or too low a level
and intentions e Not suitable for complex

e Can be descriptions

implementation- e Can be ambiguous about
independent who does what

Scenario e Good for e Hard to show parallelism,
step-by-step arbitrary ordering or
sequences optionality

e (Can be monotonous
Conversation e Good for seecing |® Easy to write to pseudo-

actor-system code
interactions ¢ Difficult to show
® (Can show parallel repetition
and optional
actions
All Forms e Informal e Informal

m Copyright 2001, Wirfs-Brock Associates, Inc. 16

The Benefits of Use Cases

Use cases describe a system from an external
usage perspective

They can be organized according to their
relevance, frequency of use, and perceived
value to the system’s users

System features can be correlated with how they
are used within specific use cases

Impacts of adding and/or removing features on
system usability can be analyzed

m Copyright 2001, Wirfs-Brock Associates, Inc. 17

Use Cases Aid Understanding

Capture information in a natural way
Users: “You mean we’ll have to ...??777”

Discover “holes” in the understanding of a
system

Sponsors: “You left out one thing here ...”

Organize work supported by the system

Developers: “Hmm, these aren’t just a bulleted
list of functions!”

m Copyright 2001, Wirfs-Brock Associates, Inc. 18

Use Cases Vary by Abstraction
Level

Steve Registers for English 101, or
Student Registers for Course, or
User Uses System, or

Student Registers for Variable Credit Course, or

Student Registers for Music Course

m Copyright 2001, Wirfs-Brock Associates, Inc. 19

Use Cases Vary in Scope

Which system boundary do we mean?

component: describing the web applet
application: online banking
organization: the bank

We typically start by describing application level
scope

m Copyright 2001, Wirfs-Brock Associates, Inc. 20

Use Cases Vary in Detail

Do we describe general actions?
Enter deposit amount

or specific details?
Press number keys followed by enter key

Write at the level that seems appropriate to your
readers

This typically means describing actor actions and
system responses that match the goal for the use
case

m Copyright 2001, Wirfs-Brock Associates, Inc. 21

What Use Cases Cannot Do

Use Cases are best used to describe system
functionality from a task-oriented perspective

They do not describe:
— user interfaces
— performance goals
— application architecture
— non-functional requirements

m Copyright 2001, Wirfs-Brock Associates, Inc. 22

Finding Use Cases

Describe end user goals supported by the
system...
“Transfer money between accounts...”
“Get money...”
“Make payments...”
“Set up vendors for automatic payments...”

m Copyright 2001, Wirfs-Brock Associates, Inc. 23

Finding Use Cases

Describe the functions that the user will want
from the system

Describe the operations that create, read,
update, and delete information

Describe how actors are notified of changes to
the internal state of the system

Describe how actors communicate information
about events that the system must know
about

m Copyright 2001, Wirfs-Brock Associates, Inc. 24

Naming Use Cases

Name a use case with a verb-noun phrase that states the
actor’s goal

Use concrete, “strong” verbs instead of generalized, weaker
ones. Weak verbs may indicate uncertainty

— Strong Verbs: create, merge, calculate, migrate,
receive, archive, register, activate

— Weaker Verbs: make, report, use, copy, organize,
record, find, process, maintain, list

Be explicit. Use specific terms. They are stronger
— Strong Nouns: property, payment, transcript, account
— Weaker Nouns: data, paper, report, system, form

m Copyright 2001, Wirfs-Brock Associates, Inc. 25

Different Perspectives

user

make payment
transfer funds

operator

edit configuration
maintain user infq

= E d .- i =]
| a8 = AL . R ~

e | E 1 - i |
BFad | T e

i - | L e) I'. oy e i

R prpdt TR - 3 . p o

5 L L h .
I !

egacy system
m Copyright 2001, Wirfs-Brock Associates, Inc. 26

Actor

Any one or thing that interacts with the system
causing it to respond to business events

Something that
— stimulates the system to react (primary actor), or

— responds to the system’s requests (secondary
actor)

Something we don’t have control over

m Copyright 2001, Wirfs-Brock Associates, Inc. 27

Primary and Secondary Actors

Primary Actor— Any one or thing that interacts
with the system causing it to respond to business
events

Something we don’t have control over

Secondary Actor— Something or someone that
responds to system requests

Something the system uses to get its job done

m Copyright 2001, Wirfs-Brock Associates, Inc. 28

Naming Actors

Group 1ndividuals according to their common use of the
system. Identify the roles they take on when they use
or are used by the system

Each role 1s a potential actor

Name each role and define its distinguishing
characteristics. Add these definitions to your glossary

Don’t equate job title with role name. Roles cut across
job titles

Use the common name for an existing system; don’t
invent a new name to match its role

Don’t waste time debating actor names

m Copyright 2001, Wirfs-Brock Associates, Inc. 29

Places to Look for Actors

ho uses the system?

ho gets information from this system?
no provides information to the system?

nat other systems use this system?

£ £ £ Z

no 1nstalls, starts up, or maintains the system?

m Copyright 2001, Wirfs-Brock Associates, Inc. 30

Finding Actors

Focus 1nitially on human and other primary actors

Group 1individuals according to their common tasks and
system use

Name and define their common role
Identify systems that initiate interactions with the system

Identify other systems used to accomplish the system’s
tasks

Use common names for these other “system” actors

m Copyright 2001, Wirfs-Brock Associates, Inc. 31

Actor and Use Case Checklist

What system requirements are not represented by
use cases”?

Document those that are internal to the system (can’t be
seen by actors) elsewhere

Do all actors and use cases have descriptive names?
Do those that need explanation have short descriptions?

Are system boundaries and scope clear?

Are areas of uncertainty documented as
assumptions and 1ssues’?

m Copyright 2001, Wirfs-Brock Associates, Inc. 32

w Copyright 2001, Wirfs-Brock Associates, Inc. 33

Glossaries

w Copyright 2001, Wirfs-Brock Associates, Inc. 34

Glossary

A glossary 1s a central place for:
— Definitions for key concepts

— Clarification of ambiguous terms and
concepts

— Explanations of jargon
— Definitions of business events
— Descriptions of software actions

The glossary 1s built incrementally

m Copyright 2001, Wirfs-Brock Associates, Inc. 35

Build Consensus

Agree on the problem to be solved!

Define terms 1n a glossary

— Identify similar behaviors that have
different names

— Identity different behaviors that have the
same name

— Choose ONE definition!

Use team development and review

m Copyright 2001, Wirfs-Brock Associates, Inc. 36

Defining Concepts

Identify a concept and its distinguishing
characteristics

More than a synonym for a word

Identifies a way of mentally dividing reality for
purpose of talking or thinking

m Copyright 2001, Wirfs-Brock Associates, Inc. 37

Writing Glossary Entries

Why this concept 1s important
Typical sizes or values

Clarity likely misunderstandings
Show an example

Explain graphical symbols

Relate entries

m Copyright 2001, Wirfs-Brock Associates, Inc. 38

A Good Form for Definitions

Name of Concept related to a Broader Concept +
Characteristics

Contrast: A compiler 1s a program that translates
source code 1nto machine language

With a definition that leaves out context: A
compiler translates source code into machine
language

What performs this translation? A computer? A
person?

m Copyright 2001, Wirfs-Brock Associates, Inc. 39

Improving Glossary Definitions

Contrast the original:

Account In the online banking system there are accounts within the
bank which customer-users can access in order to transfer funds,
view account balances and transaction historical data, or make
payments. A customer has one or more accounts which, once
approved by the bank can be accessed. The application supports
the ability for customers to inform the system of new accounts,
and for the customer to edit information maintained about the
accounts (such as name and address information).

With a definition that says what an account 1s and how it 1s used:

Account An account is a record of money deposited at the bank
for checking, savings or other uses. A customer may have
several bank accounts. Once a customer’s account is activated for
online access, account information can be reviewed and
transactions can be performed via the internet.

Copyright 2001, Wirfs-Brock Associates, Inc. 40

Another Revision

Automatic activation. Automatic activation is an optional
function of the online banking software that enables
immediate access to bank accounts. To automatically
activate an account, a customer provides information that
associates him with an account, called challenge data, such as
mother’s maiden name. Online access is granted once the
challenge data is validated against bank records. Alternatively,
the customer can supply a valid ATM bankcard number and
PIN. All accounts associated with that ATM card would be
activated.

Characteristics:
— Optional feature

— Details of how the automatic activation function
works

m Copyright 2001, Wirfs-Brock Associates, Inc. 41

Relating Definitions

Customer-user. A customer-user is a person who has online access to
banking accounts. One or more customer-users are associated
with a customer. Each customer-user can have different access
privileges to and visibility of a customer’s accounts. For example, 1n
a small business, the accounting customer-user might make vendor
payments from an account, while a business manager may simply
view an account’s transaction history.

Examples add to but don’t replace definitions

Customer. A customer is a person or organization with one or more
bank accounts. Customers do not use the online banking system,
their customer-users do.

Characteristics:

— How a customer-user relates to a customer
— What distinguishes one from another

Copyright 2001, Wirfs-Brock Associates, Inc. 42

Use Pictures to Relate Concepts

wire center— the geographical area served by a central office
central office— a building where local call switching takes place

main distribution frame— a large connector at a central office,
which connects switching equipment to feeder cables

feeder cable— a large cable that connects to the main distribution
frame at a central office and feeds into distribution cables

distribution cable— a cable that connects between a feeder cable
and one or more terminals

m Copyright 2001, Wirfs-Brock Associates, Inc. 43

A Picture Relating
Hierarchical Concepts

; terminals

wire center
Cross connect

——

\
AN

central office

main
distribution
frame
%r cables

m Copyright 2001, Wirfs-Brock Associates, Inc. 44

connector blocks

Define Acronyms
and

Their Concepts

Example:

OSS— Operations Support System: As defined
by the FCC, a computer system and/or
database used at a telephone company for pre-
ordering, ordering, provisioning, maintenance
and repair, or billing

m Copyright 2001, Wirfs-Brock Associates, Inc. 45

Avoid Using
“Is When” or “Is Where”

Definitions using these words are often missing
the broader concept

Contrast: An overplot 1s an overlap between
two or more graphic entities drawn at the
same place on a page

With:An overplot is when two things overlap

m Copyright 2001, Wirfs-Brock Associates, Inc. 46

Explain What Is Unclear

A Next Day Air Cautionary Note
Upgrading to Next Day Air does not mean you will get your
order the next day.
Once shipped, Next Day Air packages are guaranteed to arrive
at the end of the next business day. Note that upgrading method
of shipment to Next Day or 2nd Day Air does not change how
long it takes to assemble and ship an order — it only reduces the
travel time after an order leaves the warehouse. For example,
an 1item marked as “Usually ships within 2 to 3 days” and
upgraded to Next Day Air will usually leave our warehouse on
the 2nd or 3rd business day and reach you on the 3rd or 4th
business day.

m Copyright 2001, Wirfs-Brock Associates, Inc. 47

(00€ Wan e,

w Copyright 2001, Wirfs-Brock Associates, Inc. 48

Setting the Stage

Level— summary, core, supporting, or internal use case?

Actor(s)— role names of people or external systems
initiating this use case

Context— the current state of the system and actor

Preconditions— what must be true before a use case can
begin

Screens— references to windows or web pages
displayed in this use case

m Copyright 2001, Wirfs-Brock Associates, Inc. 49

Completing The Picture

Variations— different ways to accomplish use case steps
Exceptions— errors that occur during the execution of a step
Policies— specific rules that must be enforced by the use case
Issues— questions about the use case

Design notes— hints to implementers

Post-conditions— what must be true about the system after a use
case completes

Other requirements— what constraints must this use case conform
to

Priority— how important 1s this use case?

Frequency— how often 1s this performed?

m Copyright 2001, Wirfs-Brock Associates, Inc. 50

A Use Case Template

Use case name

Preamble

Use case body (narrative, scenario or conversation)

Supplementary details and constraints

m Copyright 2001, Wirfs-Brock Associates, Inc. 51

Narrative Form

Free-form text in paragraph format

Describes the intent of the user in performing the use
case

Describes high-level actions of the user during the use
case

Refers to key concepts from the problem domain that
are involved 1n the use case.

m Copyright 2001, Wirfs-Brock Associates, Inc. 52

Make Clear What You Don’t Know

Write questions about unsolved 1ssues

Put them with the appropriate use case description to
show you’re not done

Example:

Should the credit check be performed after the
Order 1s submitted or before?

What happens 1f credit 1s denied?

If you are unclear about a detail, don’t write fiction; it
could become fixed

m Copyright 2001, Wirfs-Brock Associates, Inc. 53

Avoid Vague Words

“Depends on,” 1n writing, 1s ambiguous

Example:
XYZ. depends on the following software might mean:

e The following software must be complete before
programmers at ABC can begin developing XYZ

e The following software produces data processed
by XYZ

e The following software must be installed on any
computer on which XYZ 1s to run

m Copyright 2001, Wirfs-Brock Associates, Inc. 54

Writing a Use Case Narrative

Name the use case with an active verb phrase describing
the user’s goal

Write a paragraph explaining the user’s intent, what
should happen to achieve the goal, and some key
facts about the process

Identify terms that should be defined

Annotate and reference other requirements that the use
case satisfies

Tell this “story” from a single point of view (the user’s)

m Copyright 2001, Wirfs-Brock Associates, Inc. 55

w Copyright 2001, Wirfs-Brock Associates, Inc. 56

Scenarios and Conversations:
Tips and Guidelines

m Copyright 2001, Wirfs-Brock Associates, Inc. 57

Write General and Specific Cases

Choose this option when your audience needs both
general and specific usage descriptions

High-level use case names state a general goal. Write one
narrative use case for each general goal:

Narrative: Make a payment

Describe what online payment means and typical ways of making them

Write scenarios or conversations that describe more
specific goals:

Scenario 1: Make a recurring payment

All the steps in paying my monthly phone bill ...
Scenario 2: Make a non-recurring payment

All the steps in paying a fixed amount ...
Scenario 3: Make a regular payment

All the steps in paying a monthly loan ...

m Copyright 2001, Wirfs-Brock Associates, Inc. 58

Write Two “Versions’ of the
Same Use Case

Choose this option when some want a quick 1dea, while
others want to see the details

First, write a narrative

Then, choose an appropriate form. Rewrite the use case
body at this lower-level of detail

[_eave the narrative as an overview

Consider adding an “overview’” section to your template 1f
you have always have diverse readers for your use case
descriptions

m Copyright 2001, Wirfs-Brock Associates, Inc. 59

Writing Scenarios and
Conversations
Start by writing the success story, the “happy
path”

Capture the actor’s intentions and responsibilities,
from beginning to end goal

Define what information passes between the
system and actor but don’t describe its format
or details

m Copyright 2001, Wirfs-Brock Associates, Inc. 60

Writing Scenarios and
Conversations

All steps should be visible to or easily surmised
by the actor

Resist the temptation to get too detailed
Convey how the system will work
Be clear on where to start

Describe how the goal 1s achieved
End there

m Copyright 2001, Wirfs-Brock Associates, Inc. 61

Scenario

One particular path through a use case written
from the actor’s point of view

Describes a sequence of events or list of steps to
accomplish

Each step 1s a simple declarative statement with
no branching

May describe:
— Actors and their intentions
— System responsibilities and actions

m Copyright 2001, Wirfs-Brock Associates, Inc. 62

Record Issues

Clearly distinguish what you know from what
you need to find out

Assign responsibility to a stakeholder for
resolving an 1ssue

Write and attach these to a specific description

m Copyright 2001, Wirfs-Brock Associates, Inc. 63

Online Banking Scenario

Scenario: Register Customer with Auto-Activation

1 User enters registration information:

Required information: user name, email address, desired login ID and password,
and confirmation password

One of: account number and challenge data, or ATM # and PIN
Optional: language choice and company

System checks that password matches confirmation password.
System validates required fields and verifies uniqueness of login ID
System verifies customer activation information.

System creates and activates customer online account.

N L B W

System displays registration notification.

m Copyright 2001, Wirfs-Brock Associates, Inc. 64

Include Actor Actions

Be explicit about what the actor does. Don’t disguise them
as “‘system collects” or “system captures’actions

Actor actions disguised as system activities:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)

1. Present transaction screen

2. Capture fast cash withdrawal request

3. Post transaction to bank and receive confirmation
4. Dispense money, card and transaction receipt

Fixed:

Scenario: Withdraw Fixed Cash Amount (Fast Cash)

I. ATM presents transaction screen

2. Customer selects “Fast Cash” option

3. ATM posts fast cash amount withdrawal transaction to bank and receives
confirmation

4. ATM dispenses money, card and transaction receipt

m Copyright 2001, Wirfs-Brock Associates, Inc. 65

Include System Actions

Be explicit about what the system does

No system behavior described:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)

.
2.

Fixed:

Customer selects “Fast Cash” option
Customer takes cash, card and receipt

Scenario: Withdraw Fixed Cash Amount (Fast Cash)

.
2.
3.

%%

ATM presents transaction screen
Customer selects “Fast Cash” option

ATM posts tast cash amount withdrawal transaction to bank
and receives confirmation

ATM dispenses money, card and transaction receipt

m Copyright 2001, Wirfs-Brock Associates, Inc. 66

Describing Actions

Show actor intent, not precise movements

Intention: User enters name and address
Movements:

System asks for name

User enters name

System prompts for address

User enters address

Use simple grammar

Subject...verb...direct object...prepositional phrase
The system...deducts...the amount...from the account balance

Write actions that move the process forward
“Validate that...,” don’t “Check whether”

m Copyright 2001, Wirfs-Brock Associates, Inc. 67

Condense Information Entry
and/or Validation Actions

List of Seemingly Unrelated Items:
Enter name
Optionally, enter address
Optionally, enter telephone number

Fixed:

Enter personal information (required: name; optional:
address and phone number)

m Copyright 2001, Wirfs-Brock Associates, Inc. 68

State System Actions At a
Reasonably High Level

Includes Too Many Low Level Details and Substeps:

System opens connection to the bank
System requests authorization of bankcard number and PIN #

Bank confirms bankcard and PIN are valid
System requests active accounts for bankcard

Bank returns account list
System creates active online account entries for each account

Fixed:
System validates bankcard and PIN #s
System activates accounts associated with bankcard

Make sure what is going on, and why is it is being done is obvious to
the typical reader. Know your audience

m Copyright 2001, Wirfs-Brock Associates, Inc. 69

Showing Optional and Repeated
Actions

Make clear Optionally, select an available course section

whether a stepis [y gy order, do one or more of the following:
optional eat

Indent several drink

optional steps
make merry

Next

Merge cells to
indicate the
beginning and .
end of a block of actions go here
repeated or
optional actions

Repeat

Until proposed schedule 1s built

m Copyright 2001, Wirfs-Brock Associates, Inc. 70

Writing a Scenario
Use a list

Record action steps

Record actor and system actions, identifying

each
Scenario 1 Name Scenario 2 Name
1. System does this first 1. System does this first
2. Actor first does this Actor:
3. Actor next does this 2. First does this
3. And then does this

m Copyright 2001, Wirfs-Brock Associates, Inc. 71

w Copyright 2001, Wirfs-Brock Associates, Inc. 72

Conversation

responsce

F
u
-
F S 1
. H I’
=
.
| ¥ k 'R
! |
L I
o . 1
L -
B |
i : |
[e 5
e .
W . i
Fr o
im =
: "
B u &
, .
1] x L’ ~'1
.
Y
P |
F
u
w
! ;

action

m Copyright 2001, Wirfs-Brock Associates, Inc. 73

Conversation Form

One path through a use case that emphasizes
interactions between an actor and the system

Can show optional and repeated actions

Each action can be described by one or more
substeps

May describe:
— Actor actions
— System responsibilities and actions

m Copyright 2001, Wirfs-Brock Associates, Inc. 74

Make a Payment
Conversation

General
Flow

Actor: User

System: Application

user organized by payee category

&fresem list of payment templates to

Select a payment template

ﬁ/(\esent details of selected Payment
Template and recent payment

}tory to payee

Enter payee notes, amount and
account

0 pt i O n a I Submit payment information

Action

i .

.

Apply payment to payee
Add new payment to recent
ayment list
display the payment list

Optionally, request Setup Paymen
to Edit Payment Template

Information

Select next function

Goto selected use case

Invoking Another Use Case

Copyright 2001, Wirfs-Brock Associates, Inc.

‘

Multiple
Actions

Maintain a Consistent Level of
Detalil

Do not mix intent, action and detail in the same
use case

Write at a level that seems appropriate to your
readers

This typically means describing actions, not
minute details

Description within a use case should be at the
same level of abstraction (+ one)

m Copyright 2001, Wirfs-Brock Associates, Inc. 76

Maintain a Consistent Level of Detail

Mixed level of detail:

1 Check for required fields
Capture user ID and password

2 Ask security component for validation
Issue SQL statements to security database for logon
authorization...
3 Open connection to bank server
Read account summaries. ..
Fixed:
L Check for required fields
2 Login user to domain
3 Display account summaries and bulletin

m Copyright 2001, Wirfs-Brock Associates, Inc. 77

Choosing Between
Conversations and Scenarios

Use a scenario when:
— a simple list of actions 1s sufficient
— actor-system interactions aren’t interesting

Use a conversation when:

— there are many interactions and you want to
describe them

— you want to show more detailed system responses
— you want to separate the roles of actor and system

m Copyright 2001, Wirfs-Brock Associates, Inc. 78

Don’t Embed Alternatives

Conversation: Registration with Automatic-Activation

10. If bank supports automatic activation
with ATM and PIN then...
If ATM and PIN #s are valid then....

Fixed:

Conversation: Registration with Automatic-Activation
10. Validate ATM and PIN #

Exception — Step 10: ATM and PIN #s are invalid— Report
error to user

m Copyright 2001, Wirfs-Brock Associates, Inc. 79

Leave Out Information Formats
and Validation Rules

User Name: First name, last name (24 characters max, space delimited)

email address with embedded @ sign signifying break between user
1dentification and domain name which includes domain and sub-
domain names delimited by periods and ending in one of: gov, com,
edu...

Fixed:
Required: user name, email address, desired login ID and password
One of: account number and challenge data, or ATM # and PIN
Optional: Company Name

Document information model details in a separate place!

m Copyright 2001, Wirfs-Brock Associates, Inc. 80

Don’t Mention Objects in
System Actions

Objects mentioned:
Create customer and account objects

Fixed:
Record customer account information

Remember who the readers are!

m Copyright 2001, Wirfs-Brock Associates, Inc. 81

Leave Out Presentation Details

Widget details described:
Display note in a read/write text field
From account in a drop-down list box
Amount 1n a currency field

Fixed:

Display payment template editable fields (note, from
account, amount)

Reference screens used by a conversation
Screens: See Login Page

m Copyright 2001, Wirfs-Brock Associates, Inc. 82

User Interfaces Show a Different
View

Welcome to the

Pan-American Financial
VirtualATM

Language English -|

Login ID | XXXXXYXXXXXXXXX |

Password | khkkhkhkhhhkhkkkkkkk |

Enter the VirtualATM

Register now to start using the VirtualATM

Run the demo to explore Internet banking
capabilities provided by the VirtualATM

m Copyright 2001, Wirfs-Brock Associates, Inc. 83

Writing a Conversation

Use a table
Separate actor actions from system responses

Record rounds between the actor and system

Actor Actions System Responses
Batch I do this
round | | Apnd I respond by ..
I tell you this... I am responding to what

Interactive
Round

q you are telling me and
...and this, too... giving you feedback

while you are talking
m Copyright 2001, Wirfs-Brock Associates, Inc. 84

Showing More Detail

Describe what 1s done to accomplish the use case
— Basic functionality
— Variations
— Exceptional conditions

— Things that must be true before starting the
use case

— Things that must be true on exiting the use
case

m Copyright 2001, Wirfs-Brock Associates, Inc. 85

Keep Rules in a “Policies™ Section

Use Case: Register Customer

A new user must request access and gain approval in
order to perform online banking functions.
Registration can be done instantly, if the bank
supports automatic activation, or the user can enter
a request which will be approved by a bank agent.

Policies

Customer challenge data must be validated against
customer account records before activating on-line
access.

m Copyright 2001, Wirfs-Brock Associates, Inc. 86

Use a Table for Complex Rules

available to P.O.

$6.00 per shipment

. Shipping Total price: add both columns
h Meth .
Shipping Method Time Per Shipment Per Item
Standard 3to7 :
Shipping business $3.00 per shipment $0.95 per book
plus
days
2nd Day Air
Note: Not

2 plus

I‘S;Qxe.s, ;‘hle ZZS' business |add an additional $1.95 per book
irgin Isiandas, days $10 for AK, HI, PR,

Guam, or or American Samoa

APO/FPO

addresses.

Next Day Air

Note: Not ;

available to P.O. 1 iigu(;o per shipment

‘B;(.)xe.s, Ithle [ZS' business |add an additional $2.95 per book
irgin Isiands, day $15 for AK, HI, PR,

Guam, or or American Samoa

APO/FPO

addresses.

m Copyright 2001, Wirfs-Brock Associates, Inc.

87

Document Global Requirements
in a Central Place

Distinguish between system-wide requirements
and those than span several use cases

Example: System must run 7 by 24

Example: Account information should be
encrypted and transmitted over a secure
connection

Reference those requirements that are satisfied
by the use case below the use case body

m Copyright 2001, Wirfs-Brock Associates, Inc. 88

Document Hints and Ideas

Design Notes

Errors and warnings about registration information
contents should be collected and returned to the user in a
detailed message rather than stopping at the first
detectable error.

Payments should be shown in time order, with the current
date first.

The user should not see payments that he should have
visibility of. Prevent a user from seeing a payments from
secret accounts that he should be unaware of.

Add design notes as they occur to you

m Copyright 2001, Wirfs-Brock Associates, Inc. 89

Remove Clutter

Metatext— text that describes text that follows

The purpose of this use case is to describe how customers
make payments.

Vague Generalities— well known principles

Each input screen shall fit entirely within the window and
use as little scrolling space as possible.

Piling On— extra meaningless empty words, paragraphs,
charts, sections, overbearing templates

Before piling on After
Use Case Business Use Case
Requirements Requirements Specification Document

m Copyright 2001, Wirfs-Brock Associates, Inc. 90

w Copyright 2001, Wirfs-Brock Associates, Inc. 91

Alternatives:
Exceptions and Variations

m Copyright 2001, Wirfs-Brock Associates, Inc. 92

Alternative Paths

For each significant action:

Is there another significant way to accomplish
it that could be taken at this point? (Variation)

Is there something that could go wrong?
(Exception)

m Copyright 2001, Wirfs-Brock Associates, Inc. 93

Choices for Describing Variations

Add textual descriptions of variations in the variations
section of the use case template, which may reference
an additional use case

or

Modity the body of the use case to show the variation,
especially when you want to emphasis the variation,
which may reference an additional use case

or

Draw an activity diagram that shows decision points,
alternate paths, and parallel activities

m Copyright 2001, Wirfs-Brock Associates, Inc. 94

Choices for Describing Exceptions

Add textual descriptions of exception in the
exceptions section of the use case
template, which may reference an
additional use case

or

Draw an activity diagram that shows
decision points, alternate paths, and
parallel activities

m Copyright 2001, Wirfs-Brock Associates, Inc. 95

Describing Exceptions Makes
Requirements More Complete
Possibilities in Place An Order

Ideal situation (primary use case):
— Good credit, items in stock = accept order

Recoverable situations:

— Low credit and preferred customer > accept order

— Low stock, and OK to reduce quantity = accept
reduced quantity order

Unrecoverable situations:

— Bad credit and not a preferred customer > decline order
— Out of stock = decline order

m Copyright 2001, Wirfs-Brock Associates, Inc. 96

Exceptions Added
to Place An Order

Scenario: Place An Order
1. Identify the customer
2. Identify each order item and quantity
3. System accepts and queues the order

Exceptions:

la.

1b.
2a.

.ow credit and Preferred Customer:...

LLow credit and not Preferred Customer:...

Low on stock and Customer accepts reduced

amount:..

m Copyright 2001, Wirfs-Brock Associates, Inc. 97

When to Create a New
Use Case to Describe An
Alternative

Write another...
— when an alternative appears complex

— when an alternative 1s important and you want to
emphasize it

Document simpler alternatives in the supplementary part

Document more complex ones as separate use cases

Rewrite and reorganize for clarity!

Give new use cases specific names that identify specific
conditions

m Copyright 2001, Wirfs-Brock Associates, Inc. 98

Alternatives in
Registration w/ Auto Activation

1. User enters registration information
2. System checks passwords match

3. System verifies login ID uniqueness
Variations :
1a. User enters ATM card # and PIN — see Validate ATM card and PIN
1b. User enters challenge data and account — see Validate Challenge Data
Exceptions:
2a. Report password mismatch and ask user to try again
2b. Third try — exit use case and report failure (unrecoverable)
3. Suggest unique alternative that user can accept or enter new choice

m Copyright 2001, Wirfs-Brock Associates, Inc. 99

Keep Steps at Roughly the
Same Level of Detail

A step can refer to
lower-level goals; these
subordinate descriptions
o are best described 1n a
supporting use case

Scenario: Place an Order
1. Include Identify customey

Scenario: Identify Customer
1. Operator enters name.
2. System finds near matches.
Exceptions:
2a. No match found: ...

m Copyright 2001, Wirfs-Brock Associates, Inc. 100

Describe Exceptions at a High-Level

Write higher-level steps as if the supporting use case
succeeds. Describe failure/recovery actions in an
exception.

Scenario: Place an Order
1. Include Identify customer

2. ... _ assumes success

Exceptions:

does not care why
1a. Customer not found.:. _

it failed, only
describes recovery
or failure actions

m Copyright 2001, Wirfs-Brock Associates, Inc. 101

i .

Documenting Exceptions

Name the exception below the use case body
Tell what step it relates to

Tag an exception when it 1s unrecoverable. Describe
what happens after 1t 1s detected, or

When an exception is recoverable, describe the steps the
actor or system takes to recover

Document what happens:
Choose an appropriate form
Briefly describe what happens, or

Refer to another use case describing the exception
handling

Copyright 2001, Wirfs-Brock Associates, Inc. 102

Documenting Variations

Decide whether the variation should be described within
the use case body or if it should be referenced below
the use case body (consider emphasis)

Decide whether it needs a separate description

Document what happens. Either:
Briefly describe the variation, or

Refer to a new scenario or conversation that describes
the variation in detail

m Copyright 2001, Wirfs-Brock Associates, Inc. 103

Exarcico

Describing Alternatives

m Copyright 2001, Wirfs-Brock Associates, Inc. 104

w Copyright 2001, Wirfs-Brock Associates, Inc. 105

Use Case Model

A Use Case Model includes structured use case
descriptions that are grounded in well-defined
concepts constrained by requirements and

scope© N
(D e Use Gase
- % Deserftions

/

m Copyright 2001, Wirfs-Brock Associates, Inc.

_

\

Concepis

106

Censiralis
Recuirements

Use Cases Can Be Related

UML defines these relationships between use cases:
Dependency— The behavior of one use case is affected by another

Being logged into the system 1s a pre-condition to performing
online transactions. Make a Payment depends on Log In
Includes— One use case incorporates the behavior of another at a
specific point
Make a Payment includes Validate Funds Availability
Extends— One use case extends the behavior of another at a
specified point
Make a Recurring Payment and Make a Fixed Payment both
extend the Make a Payment use case

Generalize— One use case inherits the behavior of another; it can
be used interchangeably with its “parent” use case

Check Password and Retinal Scan generalize Validate User

m Copyright 2001, Wirfs-Brock Associates, Inc. 107

Copyright 2001, Wirfs-Brock Associates, Inc. 108

S

Edit Customer Status

Edit , Record Payment
Account Information

. Inf 4
%<lncludes>> nformation
Get Quicken
Q Q Transaction File /
<<in¢ludes>> Q Bank Agent

Edit Make Payment
Activate Customer
and Accounts
/ Get Tab-Delimited
Transaction File
. <<depends>>
O <<includes>> p
View Account -

Edit Customer

@

View

Payment Template
Maintain User
Information
Statement
Account Balances Establish Preferred
\ Language
/ Custome% /\

p > . &
Demo Transfer Funds <<'m§udes>> Login
Online Bank -

- Delete a Payee
\Post'l’ransfer of Funds

Edit Payee Information

4l <<extends>>

Categorize Payee

Add a Payee

, Acivlﬁgemil;iig?;er A Use Case
Diagram

and PIN #

Use Case Levels

Use cases can be written at differing levels of abstraction
and scope. Each serves a purpose:

Summary— General descriptions and sweeping overviews of
system functionality or business processes

Core— Task-related descriptions of users and how they interact
with the system; descriptions of a specific business process

Supporting— Descriptions of lower-level activities used to
complete subparts of a core use case

Internal— Descriptions of the behaviors of and interactions
between internal system components

m Copyright 2001, Wirfs-Brock Associates, Inc. 109

Use Case Models Vary in Shape

Sailboat — balanced use cases
Classical business functions

project goal
advertise order invoice

Corel 7N N\ N

promotion promotion promotion order Invoice

Alistair Cockburn, Humans and Technology

m Copyright 2001, Wirfs-Brock Associates, Inc. 110

set up || reference | A | monitor g place create send invoice | A

Use Case Models Vary in Shape

Hourglass—small core
Ad hoc information query/data warehousing

Support Summary
executive
Nt
WX\
Human engineering provisioning marketing sales
— \ l A‘//

Generic Core

\ Queries

m Copyright 2001, Wirfs-Brock Associates, Inc. 111

Use Case Models Vary in Shape

Pyramid—supporting use case rich
Software application development environment

Support generic
Summary Telco Billing
Configure Configure Configure
collection reporting cycle C()re
,// l / \ Optm\\
|dentify Establish Present Identify Specify

ve. | interfaces Mapping options usage FuTes ot
// \ - \\\
- - _s AT

m Copyright 2001, Wirfs-Brock Associates, Inc. 112

Emphasize What’s Important

Within a Use Case
Things gain prominence by their position and
appearance. To increase an item’s emphasis:
Put 1t first
Highlight it
Surround it by white space

e Putitin a bulleted list
Mention it in multiple places

Give 1t more room

Repeat or restate it in different forms
Say it another way

Mention it in multiple places

m Copyright 2001, Wirfs-Brock Associates, Inc. 113

What’s Emphasized?

Template 1
Use Case: Make a Payment
Author: Rebecca
Last Revision Date: 9/11/01
Version: 0.4
Status: Preliminary Review

Level: Summary

Template 2
Use Case: Make a Payment
Actor: Bank Customer

Pre-condition: User has an
active account and 1s
authorized to transfer funds

m Copyright 2001, Wirfs-Brock Associates, Inc.

114

What’s Emphasized?

Choose course by optionally, in any sequence:
e Include Browse Course Catalog
e Include Choose Next Course from Degree Plan
e Enter course section

m Copyright 2001, Wirfs-Brock Associates, Inc. 115

Emphasize What’s Important
Within a Use Case Model

Place first those use cases you wish to emphasize

Choose the form of use case descriptions according to
what you want to emphasize:

— A conversation emphasize the dialog between
system and actor

— A narrative emphasizes the high points of a story,
not the details

Repeat and restate things to make them stand out

Choose a template that doesn’t inadvertently emphasizes
the wrong things

Copyright 2001, Wirfs-Brock Associates, Inc. 116

i .

A Use Case Writing Process

Full Team

Small Teams or
Individuals

The Products

Align on scope, level of
abstraction, actors, goals,
point-of-view

Actors, Candidate
Summary Use Case
Names

Write summary Narratives
descriptions
Collect and clinic, Candidate Core Use Case
brainstorm key use cases Names
Write detailed Scenarios OR
descriptions conversations

Collect and clinic, identify
gaps and inconsistencies

Potential new Use Cases

Revise and add precision

m Copyright 2001, Wirfs-Brock Associates, Inc. 117

Revised Use Cases with
Supplementary Details

Organize Your Use Case
Descriptions

Choose an organization for your use cases

— by level (summary first, core next, supporting, then
internal ones last)

— by actor
— by type of task
— arranged in a workflow

Be consistent. Keep various forms of a single use case
together

m Copyright 2001, Wirfs-Brock Associates, Inc. 118

Use Case Model Review Checklist

Check for internal consistency between use cases
Identify “central” use cases

Identify unmet or externally satisfied preconditions
Review the actor’s view for completeness

Review the handling of exceptions

Document use case dependencies, extensions and
includes relationships

Document external dependencies

m Copyright 2001, Wirfs-Brock Associates, Inc. 119

Two Worlds, Three Descriptions
Solving a Problem With a Machine

Problem

Specification

Requirements Product

m Copyright 2001, Wirfs-Brock Associates, Inc. 120

THE ART OF WRITING UsE CASES TUTORIAL
NOTES

|. Description and Objectives

Thisis anintroduction to use cases, atechnique for structuring system usage descriptions, and the principles of a
user-oriented devel opment process. You will be able to apply the principles and techniques to your projects, writing
appropriate usage descriptions.

The topicsinclude:

[11. The context for use cases

IV. Use case modeling constructs
V. System glossary

VI. A Use Case Template

VII. Narratives

VII1. Scenarios and Conversations
IX. Other Descriptions, Exceptions, and Variations
X. A Use Case Model Checklist
XI1. The Writing Process

XII. More Tips and Techniques

1. Further Resources

There are several good books about use cases. We recommend these three:

Writing Effective Use Case, Alistair Cockburn, Addison-Wesley, 2001, ISBN 0-201-70225-8

Use Cases Requirements in Context, Daryl Kulak and Eamonn Guiney, Addison-Wesl ey, 2000, ISBN 0-201-
657678-8

Software for Use A Practical Guide to the Models and Methods of Usage-Centered Design, Larry Constanti ne and
Lucy Lockwood, ACM Press,1999,ISBN 0-201-92478

Andy Pol’ swebsite, The Use Case Zone has many pointers to online articles, templates and use case di scussions:
http://www .pols.co.uk/usecasezone/

[Il. The Context for Use Cases: Team Development

Development is never done in a vacuum; there is always a context. Many of the stakehol ders in our devel opment
efforts do not speak in our native object-oriented tongue. In our role of analyst we face two challenges: correctly
interpreting stakehol ders' knowl edge of the problem, their concerns and requirements in our models, and presenting
our design work in terms they can understand.

Copyright 2002 Wirfs-Brock Associates 1

A good system never dies, it isadapted and improved upon.

A system takes form through a series of textual and graphical descriptions. At each time-slice of the project, the
description should be less ambiguous, but each form should be describing the same thing. Each description, when
viewed by a practitioner with experience in the corresponding natural, graphical, or programming |anguage, can be
eval uated according to a number of well-known criteria. Typically, the system came to be through a structured pro-
cess known as design, often preceded by a form of requirements gathering and specification called analysis. During
analysis, one of your tasks is to describe our system' s usage with use cases.

Each participant in the life of a software system has a unique set of criteria for evaluating its quality duringits
devel opment. The target val ues that are used during such eval uation varies according to their point-of-view. To begin
simply, let's imagine sets of criteria that are important from three points-of-view:

e user
e anayst/designer
* programmer

To bring together all of these perspectives, you need a systematic way to consider the problem. Once you can
agree on the nature and requirements of the problem, you can make informed deci sions about and document which
parts of the problem you intend to automate with the computer. Finally, you will have solid ground for determining
whether or not the program that you build for our machine has, in fact, accomplished your goals.

Copyright 2002 Wirfs-Brock Associates 2

The User

The user is particularly concerned that the system be easy-to-use. Of course, this requires that the application con-
trols and processing be transparent, consi stent, correct and natural to the user. The system must also do thejob, i.e., it
must be complete, and it should be configurable to anindividual user's specific needs.

The Analyst/Designer

From the anal yst/designer’ s point-of-view, the requirements, the specifi cation and desi gn must be simple and easy
to understand. It must be modular and traceabl e to the requirements. Due to an ever-evol ving specification, it must be
flexible and extensible. Specified portions must be reusabl e. Further, the system under devel opment is constrai ned by
business and user requirements. The functional characteristics of the design should be concise without | osing the
detail s of its execution behavior.

The Programmer

Programmers have all the issues of the designer. But when entering the i mpl ementati on domain, they must be cer-
tain that the application is possible. Beyond that, they must live with the constraints i mposed by the hardware that
application performs on.

Building Consensus

System devel opment has three areas of activity: understandi ng and documenti ng the problem and its requirements,
specifying how the various users will be able to use the system to satisfy the requirements and how the system will
fulfill all of the remaining non-usage requirements, and i mplementi ng the specification as software executing on
appropriate hardware.

V. Use Case M odeling Concepts

A specificationis a statement of what the systemisto do in the context of your problem. It describes how the require-
ments that you have elicited by asking the right probing questions will be fulfilled. Requirements that can be sati sfied
by interacti ons between a user and the program can be described by use cases.Use cases present a model of how your
systemis used and viewed by its users. This use case model isjust one view devel opers need to understand as they
proceed with design and implementation. It is also aview that other stakeholders in the specification of a product can
readily understand and comment on. A usage model, expressed as use cases forms the basis for a behavioral descrip-
tion of a system.

Let’'s introduce the core concepts of use case models:

Use Case

A use case is a description of system functionality from a particular point-of-view. Many use cases describe task-
related activities. For example, in the Online Bank application, which we draw upon to illustrate concepts in this
course, we wrote use cases to describe these activiti es, among others
» making a payment
« transferring funds between accounts
* reviewing account balances
Each use case describes a discrete “ chunk” of the online banking system. These use cases were described from the
users’ viewpoint.
Use cases don'’ t dive into implementation detail s, but describe how something behaves from an external perspec-
tive. A use case may include more or less detail, depending on its intended audience and what level it of the systemit
describes.

Three Use Case Forms

We recommend you consider three forms of use case descriptions. Each different form has its strengths and weak-
nesses. Depending on what you need to describe, and at what level of detail, you should pick the appropriate formto

Copyright 2002 Wirfs-Brock Associates 3

write a use case description. Y ou might choose to first write high-level overviews, then add detail and describe the
sequences of actions and interacti ons between the user and the program. The form you choose depends on what you
are trying to express.

Y ou may write one or more forms for each use case, depending on the needs of your audience. Write narratives to
present a high-level overview. Then, if appropriate, write one or more scenarios or conversations that el aborate this
high-level description.

TheWriting Task TheBest Form To Use
Present Overview Narrative
Describe simple Scenario

sequence of events

Emphasisactor-system Conversation or
interaction Essential Use Case

Here are examples of each of the three forms.
First, a use case narrative taken from an on-line banking project:

Make a Payment
Narrative

The user can make online payments to vendors and companies
known to the bank. Users can apply payments to specific
vendor accounts they have. There are two typical ways to
make payments: the user can specify a one-time payment for a
specific amount, or establish regular payments to made on a
specific interval such as monthly, bi -weekly, or semi-
annually.

It offers a high-level view of how the requirements of “ Make a Payment” are sati sfied.

A use case narrative has a very simple format. It begins with the name of the use case, and is foll owed by a brief,
textual description that explains at a highlevel how an actor interacts with our systemin order to accomplish atask or
goal. Here is another narrative:

Register Customer
Narrative

To use the system, a customer must be registered. There are two ways to
register. If the bank supports * automatic activation”, all the customer
must do is supply identification information. After the system verifie
the customer has an account and the information is corrector, the
customer may use the system. If the bank does not support automatic
activation, the customer submits a request to be activated, along with
identification information. After a bank employee has check the
information and activated the customer, the customer may use the sy
This may take a few days.

Copyright 2002 Wirfs-Brock Associates 4

There are two scenarios outlined inthe narrative: one for automatic activation, another with manual activation. We
write a sequence of actions to describe each. Here is an exampl e of the scenario for registering with automatic activa-
tion.

Register Customer with
Automatic Activation
Scenario

1 User enters registration information:

Required information: user name, email address, desired login ID and password, and
confirmation password

One of: account number and challenge data, or ATM # and PIN

Optional: language choice and company

2 System checks that password matches confirmation password.
System validates required fields and verifies uniqueness of login ID

3

4 Systemverifies customer activation i nformation.

5 System creates and activates customer online account.
6

System di splays regi strati on notification.

Notice that, al ong with the sequence of actions, we include some notion of the types of information that are used.

Finally, the more detailed conversation formallows us to clearly show the system’ s responses to the actions of the
user. Here we have many opportunities to demonstrate decisi on-making, iteration, and dependency among the parts
of the problem.

Actor: User System: Application
Present list of payment templ ates to
user organized by payee category

Select a payment templ ate

Present detail s of sel ected Payment
Template and

Recent payment history to Payee

Enter payee notes, amount and
account
Submit Payment Information

Apply payment to payee
Add new payment to recent
payment list

Redi splay the payment list

Optionally, request Setup Payments

Goto Edit Payment Template
Information

Select next function

Goto selected use case

Each form has its strengths and weaknesses. Conversations show more detail, scenarios show step-by-step sequences,
narratives are free-form text. The form you choose depends on what you want to convey to your reader, and how
much detail you want to show.

Copyright 2002 Wirfs-Brock Associates 5

Form Strengths Weaknesses

Narrative Good for high- Easy to write at too high
level summaries or too low alevel
Can be writtento Not suitable for complex
be implementation | descriptions
independent Can be ambiguous about

who does what

Scenario Good for Hard to show parallelism
step-by-step or arbitrary ordering
seguences Can be monotonous

Conversation - Good for seeing Easy to write at too
actor-system detailed level: pseudo
interactions pseudo-code
Can show parallel Only two columns: What
and optional about multiple actors?
actions

All Forms Informal Informal

Abstraction, Scope, and Detail

Use cases can be written very concretely, or they can generalize specific actions to cover broader situations. For
example, we could write use cases that describe:

Steve registers for English 101, or

Student registers for Course, or

User uses System, or

Student registers for Variable Credit Course, or
Student Registers for Music Course

In order to choose the right level of abstraction to write a use case, you need to understand how the behaviors of
both the actor and the system might be expressed to cover the widest range of situati ons without | osing any i mportant
details. Clearly, “ User uses System” istoo high-level, and “ Steve registers for English 101" istoo concrete. However,
it may be important to write use case descriptions for “ Student registers for Course” and, if the system’ sor user’ s
actions are sufficiently different, to also describe “ Student registers for Variable Credit Course.” Infact, if registering
for a music course means signing up for practice sessions in practice rooms in addition to classroom instructions, it
too may need additional description. You can also express variations within a single use case description.

Use cases vary in scope and detail. Y ou can use themto describe all or part of our “ system” . Which system bound-
ary do we mean:; At a particular component (describing the web appl et)? across the application (on-1ine banking)? or
across multiple applications within the organi zation (the bank)?

We typically start by describing application level scope. The amount of detail that we choose to put into use cases
varies. We could describe general actions: Enter deposit amount. Or specific detail: Press number keys followed by
enter key

Write at the level that seems appropriate to your readers. This typically means describing actor actions and system
responses that match the goal for the use case. So, to foll ow that guideline, if the use case were named “ Make
Deposit,” we'd describe the user general action of “ enter deposit amount,” not his or her gestures: “ Press number
keys followed by enter key.”

Copyright 2002 Wirfs-Brock Associates 6

Recipe: Finding the Use Cases

1. Describe the functions that the users will want from the system.

2. Describe the operations that create, read, update, or del ete i nformation that the system
requires. Describe these operations.

3. Describe how actors are notified of changes to the internal state of the system.

Identify actors that i nform the system about events that the system must know about. Describe
how the users will communi cate the i nformati on about these events.

Actors

An actor is some one or some thing that i nteracts with our system. We divide actorsin to two groups:

¢ those that stimul ate the systemto react (primary actors), and
¢ those that respond to the system’ s requests (secondary actor)

We model actors so we can understand what behaviors they’ || need from our system, if they are primary actors.
We model secondary actors so we understand how our system uses external resources. In the Unified Modeling Lan-
guage, the stick figure iconis how we show an actor on a use case diagram. Thisis the standard notation for an actor,
although you may choose another icon that is more meaningful .

Actors are the external agents that use (or are used by) our system. Those that i nitiate activity are worth considering
as a group. These primary actors stimul ate the system to take action and form the basis of most of our usage descrip-
tions. The other, secondary actors, interact with the system only because the system poses questi ons to them or i ssues
acommand. They are usually external programs or devices, although sometimes the systemwill direct a human to
perform atask.

Most often, systems engage with an actor called the user. In fact, we often unconsciously equate an actor with this
user. But such a narrow vision will often make us overl ook significant areas of the system’ s requirements. For exam-
ple, many systems require support for administrators and technicians that periodically maintain and configure the sys-
tem. These activities are quite different fromthe user's tasks. Systematic consideration of the various actors that are
involved with our systemwill ensure a more compl ete understanding of what it must do.

Guidelinesfor Finding and Naming Actors

GUIDELINE: Focus on primary actors.

In the on-line banking system, we have a number of human actors. The one we initially focused on was the cus-
tomer-user who accesses financial servicesincludingbill payment, account balance and statement inquiries, and
funds transfer. An agent of the bank (or bank agent) can perform several tasks: customer maintenance, consol e
operation, and bank admini strative functi ons which include bank agent mai ntenance, and system configuration.

GUIDELINE: Group individuals according to their common use of the system. Identify the rol es they take on
when they use or are used by the system

Eachroleis a potential actor
Name each role and define its disti ngui shing characteristics. Add these definitions to your glossary

Copyright 2002 Wirfs-Brock Associates 7

GUIDELINE: Focus initially on human actors. Ask:

» Who uses the system?

» Who installs the system?

» Who starts up the system?

* Who mai ntai ns the system?

» Who shuts down the system?

» Who gets information from the system?

» Who provides information to the system?

GUIDELINE: Name human actors by their role.

Specific people may play several roles; several actors may represent them. We could divide our bank agent actor
into several, more distinct roles: consol e operator, bank agent administrator, customer administrator, and system
configuration manager. These finer distinctions, while easily made, didn't really hel p us gain any new insights
about system requirements for bank employee usage. While important, bank agent usage wasn't a high priority.
The customer-user facilities were of primary interest to the project manager and sponsors. So we backed off and
did not enumerate these kinds of bank agent actors.

GUIDELINE: Don't equate ajob title with an actor name.

This wasn't a problem on the online banking application. Since we didn't directly interact with bank empl oyees
we didn't know their job titles. We were arm's length from end users, so it was easy for us to create a single bank
agent category. However, we have seen several projects where jobs and titles get in the way of understanding of
how users need to use the system. Supervisory job titles don't always equate with more features; usage often cuts
across job function.

GUIDELINE: Don't waste time debating actor names.

Actor names should be nouns or noun phrases. Don't be too low level when naming actors. Don't be too abstract
in describing or naming an actor. We didn't have the benefit (or bias) of knowing the name of any existing | egacy
applications at banks. The physical name of the transaction service, e.g. CICS, seemed too physical and not very
descriptive; our next line of thought was that this actor represented our connection to existing | egacy applica-
tions. So, we settled on calling this external actor a legacy connection and left it at that!

GUIDELINE: Be consistent in showing actors. Y our choices are:

» Show all actorsthat interact with the system, even remote systems,
» Show only those initiators of the contact,

» Show only those actors that need the use case,

» Show only human actors, not the system

We recommend you use the first strategy, and distingui sh actors that initiate contact as primary actors, and
actors that the system touches as secondary actors.

GUIDELINE: An actor name for an existing system should refer to its common name.

GUIDELINE: Names of non-human actors are more recognizable if they simply remain the name of the system.

Don't invent clever, more abstract names if it causes confusion. In the online banking application it was fairly
easy to find our non-human actors. We recorded i nformati on about On-line Banking System customers and their
transactions in an Oracle Database, and accessed | egacy systems (either CICS, IMS/DC) to perform financial
transactions and pull current account information. This led us to two external actors: legacy connection and data-
base. These actors mainly were of interest to the devel opment teamwho needed to model objects that represented
interfaces to these external actors; the project sponsor only cared about the kind of |egacy connections that woul d
be supported, and that Oracle was the database we had sel ected.

Copyright 2002 Wirfs-Brock Associates 8

GUIDELINE: If you are building a system whose behaviors are based on privileges and rights of individuals
rather than ontheir roles, record these variations in a manner that | ets you track their impact on the design - don't
try to solve it with actors alone.

Someti mes we need to know more about i ndividual users than their actor roles. Y ou may need to describe indi-
viduals' rights and capabilities, and note what privileges are required to exercise certain system functionality.
Simply defining actors doesn't buy us enough information. This issue came up in our system design when we
started considering version two On-line Banking System features. In rel ease one, a customer-user could regi ster
and use all banking functions; in version two, a major requirement was that multiple users could be associated
with a single customer. Each user might use a different set of the customer's accounts. A user could grant account
visibility if he/she had appropriate privileges (the ability to do account and user maintenance). Initially, we
debated splitting customer-user into primary- user and customer-user, but talked ourselves out of creating a new
actor to solve our conceptual problem. It wasn't clear that 'primary user' was the right distinction. One clue was
that our domain expert didn't like thisidea at all. He felt that since all customer-users had the potential to do
account and user mai ntenance, they shouldn't be arbitrarily divided into different actors. We also realized that
our second attempt at factoring bank agent into roles hid the requirement that our system needed to | et banks con-
figure the capabilities of individual bank agents. Those that were trained in customer administration weren't
likely to al so perform consol e operator functions, but it was up to the bank to decide who could do what; it was
up to our systemto enforce and grant these capabilities.

These activities are quite different from the user's tasks. Systematic consideration of the various actors that are
involved with our software will ensure a more compl ete understanding of what the software must do.

Recipe: Finding Actors

SRS NSNS

Focus initially on human and other primary actors.

Group individual s according to their common tasks and use of the system.

Name and define their common role.

Identify systems that initiate i nteraction with the system.

Identify other systems used to accomplish the system's tasks (these are secondary actors).
Use common names for these other “ system” actors.

Use Case M odels

A single use case describes a discrete chunk of the system’ s functionality. A use case model is a collection of

related descriptions of our system’ s behavior. These descriptions are backed up by clearly understood concepts, and
shoul d sati sfy system requirements.Use case descriptions are typically written from an external perspective; that of a
user performing task-related activities. These descriptions formthe basis of our view of how the various actorsinour
problemwill interact with the program and flesh out one of our perspectives of the specification.

.
O ~
O .| Usalase M

\ 00
Q/B % Boserfios | ComEEpES |6, e

Reepuirements
g

Edit Customer
Information

J -

While youinitially focus on use cases initiated by human actors, there are a number of other systeminitiated use

cases that can be documented, such as:

* initializing the system on startup
* broadcasting change i nformation to other active components
* backing up the database

Copyright 2002 Wirfs-Brock Associates 9

Use Cases Can Be Related

Use case diagrams can show a big picture of the applicati on by demonstrating what actors participate in what use
cases, and by showing the rel ati onshi ps among the various use cases. Relations like “ uses” , “ depends” , and “ extends”
are added when this additional level of detail provides useful information.

GUIDELINE: Don't show everything!

GUIDELINE: You can have more than one system view. Don't try to put all of your useful information into one
diagram.

The Unified Modeling Language defines these rel ati onshi ps between use cases:
Dependency— The behavior of one use case i s affected by another
Being logged into the systemis a pre-condition to performing online transactions. Make a

Payment depends on Log In

Includes—One use case incorporates the behavior of another at a specific point

Make a Payment includes Validate Funds Availability

Extends— One use case extends the behavior of another at a specified point

Make a Recurring Payment and Make a Fixed Payment both extend the Make a Payment
use case

Generalize—One use case inherits the behavior of another; it can be used interchangeably withits “ parent”
use case

Check Password and Retinal Scan generalize Validate User

Use Case Diagrams

A use case diagram shows a high-level picture of the users and the use cases they participate in. In a complex sys-
tem, several use case diagrams can be drawn to show different views of how the systemis used. The Unified Model -
ing Language i ncl udes a graphi cal notation for representi ng use cases as el lipses and actors as stick figures. The lines
drawn between actors and use cases i ndi cate that the actor isinitiating the use case. Use cases can call upon other use
cases, indicated by the <<includes>> rel ationship, or vary the behavior of a use case, indicated by the <<extends>>
rel ationship. The dependency rel ationship is shown by a dashed line. Generalizati on (not shownin the diagram

Copyright 2002 Wirfs-Brock Associates 10

below) is shown by an open arrow pointing to the use case being generalized. Thisis the same as the inheritance rel a-
tionship between classes.

O @& o O

Edit Customer Status

Edit Record Payment .
Account Information ym Edit Customer

/4<includes>> Information
Get Quicken

<<j udes>> Q Bank Agent
Edit Make Payment
Payment Template Activate Customer
and Accounts

Get Tab-Delimited
Transaction File <<depend >

— <<includes>>
D - N

-

Maintain User
X View Account Information
View Statement .
Account Balances Establish Preferred
R Language
EE Edit Payee Information
P \ <<extends>>
: Customer O :

Demo Transfer Funds <<i~n§udes>> Login

Online Bank - Categorize Payee
- Delete a Payee

\Fﬂ)st‘rransfer of Funds

O - Add a Payes A Use Case

- activate Custamer Diagram

Automatically

Register

Verify ATM
and PIN #

Guidelinesfor Drawing Use Case Diagrams

GUIDELINE: Identify the “ shape” of your use case model, then draw one or more use case diagrams that present
meani ngful snapshots of your system’ s behavior.

GUIDELINE: Don'tinclude every use case in a single Use Case Diagram.

Y ou can draw more than one use case diagram. A use case can be shown on more than one diagram, too. The
purpose of a use case diagramis to convey a particular organi zati on of use cases.

Some possible diagrams: A diagram showing core use cases and their initiating actors; a diagram that emphasi zes the
i nteractions and dependenci es between two actors; a high-level diagram that i dentifies summary use cases; a detailed
diagram that shows how certain core use cases are fulfilled by “ including” supporting use cases; a diagram that i den-

tifies key variations with use cases that “ extend” other use cases

Use Case L evels

Use cases can be written at various level s of abstraction. They can describe sweeping overviews of system function-
ality. These are termed “ summary” use cases. Use cases can describe task related activities of users as they interact

with the system. These are “ core” or task level use cases. Y ou can describe how your software behaves in support of
core use cases. We term these “ supporting” use cases. Y ou can dig even deeper and describe how components in our

Copyright 2002 Wirfs-Brock Associates 11

software behave and interact. These “ internal “ use cases are of val ue to those designing how the responsibilities of
the system are distributed between components.

The most useful level to consider fromthe external actor’ s understandingis the corelevel . Thiswill be the focus of
our writing in class. However, sometimes other stakehol ders need to see the big picture and will need to read sum-
mary use case description. Devel opers need the extra precision found in supporting and internal use cases. Core |evel
use cases are linked to lower level supporting use cases, and are part of higher level strategies.

Use Case M odel Shapes

Depending on the nature of the system you are trying to describe, your use case model may assume one of several
shapes. Alistair Cockburn, in Writing Effective Use Cases, i dentifies the sailboat shape. It is a use case model that
includes awell structured set of core use cases that are defined to meet strategic behaviors outlined inafew summary
level use cases. Inthis sailboat image, most of the use cases are core- those found at the waterline where the sailboat
sitsinthe water. At the core level, you identify specific tasks of various actors usi ng the system. Below this waterline
are supporting use cases that are used to fulfill one or more core use case functions.

| advertise | | order | | invoice |

XS, N, N

setup' | referenf:e LA monnor A place order | A create invoice send invoice
promotion promotion promotion

FIGURE 1. A sailboat shaped Use Case M odel. A balanced number of core or task-level use cases.

A second characteristic use case model shape isthe “ hourglass” . This use case model is characterized by a small
(could even be one) number of core or task-level use cases that call on awide-range of supporting use cases. The core
use cases could support several strategic goals. Inthis use case model shape, variations and complexities are typically
hi dden to the software user performing a core use case.

Support executive Su mmar y
‘/‘}HR\

Human |eng‘neering | |provisioning | |marketing |

= 17

Generic Cor e

\ Queries
[Stporing]

FIGURE 2. An hourglass shaped Use Case M odel. M uch of the complexity of the softwareisnot evident to
the user.

Copyright 2002 Wirfs-Brock Associates 12

A third shapeisa*“ pyramid” . Inthis Use Case model, there are many supporting use cases, each defining function-
ality that can be called on by afew core use cases. Thisistypical of a software application devel opment environment
or an operating system. Sometimes, there may be little or no distinction between core and supporting use cases: all
may be exposed and usabl e by the same actors.

Support generic
Summary o
Configure Configure Configure
/ collection reporting cycle options COI’ e
Identify Establish Present Identify
interfaces Mapping options usage

--

FIGURE 3. A pyramid-shaped Use Case M odel. Core use cases resting on numerous supporting use cases.

Example: Defining Usage Requirements

The On-line Banking System requi rements consi sts of support for all of the tasks that the users need to perform
with the system. They initiate the activities of the system and their agendas are reflected in the use cases:
* Login
* Register Customer
* View Account Balances
* View Account Statement
» Transfer Funds
* View Session Activities
» Select Setup Choice
» Edit User Information
» Edit Account Information
* Delete Account
» Edit Payment Template Information
* Make Payment

When you define what your system does for its users, you are al so determining the boundaries of our system:
what’ sinside?, what' s out of scope?, what does your system do for its users?, how do they interact withit?, and how
does it interact with other systems?

In the on-line bank, although the end users using the web were of primary concern, there were other people and
systems that i nteracted with the software. These actors also initiated and participated in a number of use cases. Exter-
nal systems, and how they were used were important, too.The interactions and usage of |egacy software were impor-
tant to specify so that it could be isolated and viewed in a uniformway by other parts of the system. The use of the
database was of concern to devel opers and the sponsors. Although the database was a secondary actor; the detail s of
what was stored in the database, and the requirements for storing transaction details (not internal transactions) madeit
important to describe it in a manner that was understood by both parties.

Copyright 2002 Wirfs-Brock Associates 13

Drawing the System Boundary
Actors and Use Cases

user
make payment
transfer funds

operator
edit configuration
maintain user iNf Qs

administrator p
add bank agent '

egacy system

Use cases are only part of any system specification. Use cases are often accompani ed by supporting i nformation,
pictures, more formal descriptions of algorithms, etc., that are meaningful to people who will build or use the system.

The sources of funding of the on-line bank were a consortium of South American banks, and a major computer
manufacturer. They specified schedul e, cost, deliverables, variability from one bank to another, support for legacy
connectivity, user languages, devel opment tool s and |anguages, hardware platforms, and di stributi on requirements.

The user requirements came from representatives of the banks: the tasks to be performed on-line, the user inter-
face, and the roles of the people that will use the application.The technical architect imposed a set of non-functional
requirements on the system: reusability, performance characteristics, robustness, configurability, support for technol -
ogy standards, error-handling, and fault tol erance. The patterns of usage were not nearly as difficult as the “ internal” ,
structural and behavioral requirements imposed by the system architect and the sources of funding.

Itisfor this reason that use cases are only part of any system specification. They are accompanied by supporting
informati on, pictures, more formal descriptions of al gorithms, hardware componentry, etc., that are meaningful to
people who will build or use the system.

V. Glossaries

The purpose of aglossary is to clarify terms so that team members can know what they are agreeing or disagreeing
on. A common set of terms that are defined and understood forms the basis for all our descriptions. A glossary should
be devel oped to accompany a use case model as well as other requirements documentation.
A glossary is acentral place for:
 Definitions for key concepts
« Clarification of ambiguous terms and concepts
» Explanations of jargon
+ Definitions of business events
 Descriptions of software actions
The glossary is built incrementally. Terms in the glossary form a working descri ption of the concepts and events
that exist in the various domains of the problem, and clarify the terms that we use to describe requirements and write
use cases. A good glossary entry follows this form:
“Name of a concept” related to a* broader concept” + any distingui shing characteristics
For exampl e:
A compiler isaprogram that translates source code into machine | anguage.

Copyright 2002 Wirfs-Brock Associates 14

Here is an exampl e from the on-line bank contrasting an original version with animproved version, reworked for
clarity:

Improving Glossary Definitions
Contrast the original:

Account Inthe online banking system there are accounts within the bank
which customer-users can access in order to transfer funds, view account
balances and transaction historical data, or make payments. A customer has
one or more accounts which, once approved by the bank can be accessed.
The application supports the ability for customers to inform the system of
new accounts, and for the customer to edit i nformati on maintai ned about the
accounts (such as name and address i nformation).

With a definition that says what an account is and briefly
describes how itis used:

Account Anaccountisarecord of money deposited at the bank for
checking, savings or other uses A customer may have several bank
accounts. Once a customer’ s accourt is activated for online access, account
information can be reviewed and transactions can be performed via the
internet.

Experience has shown the val ue of devel oping a common set of terms for the devel opment team. Seasoned devel op-
ers, because of their wide experience in the domain, will have encountered multiple, varying definitions for many of
the core concepts. A concept glossary levels the playing field and unifies these diverse points-of-view. For team
members new to the domain, a concept glossary offers a jumpstart to understanding the domain, and is vital to under-
standing the requirements.

GUIDELINE: Write definitions for key concepts.
GUIDELINE: Build incrementally when writing requirements.

GUIDELINE: Add supplementary information.

Why is this concept important? What are typical sizes or values? Clarify likely misunderstandings. Explain
graphical symbols

GUIDELINE: Determine an appropriate name for each concept.

GUIDELINE: Normalize names.

Identify behaviors that are the same but have different names. Identify behaviors that are different but have the
same name.

GUIDELINE: Define acronyms and their concepts.

Example: OSS - Operations Support System: As defined by the FCC, a computer system and/or database used at
a tel ephone company for pre-ordering, ordering, provisioning, maintenance and repair, or billing

GUIDELINE: Use pictures to relate concepts.

Example: We recommend defining terms and rel ating them with a pi cture as the best way to get across compl ex
relationships. Here are some rel ated concepts:

wire center- the geographical area served by a central office
central office- abuildingwhere local call switching takes place

mai n distribution frame- a large connector at a central office, which connects switching equi pment to feeder
cables

Copyright 2002 Wirfs-Brock Associates 15

feeder cable- alarge cable that connects to the main distribution frame at a central office and feeds into distribu-
tion cables

distribution cable- a cable that connects between a feeder cable and one or more terminals
and a pi cture showing how they are rel ated:

A Picture Relating
Hierarchical Concepts

terminals

wire center

Cross connect

central office

connector blocks

main
distribution
frame

feeder cables

GUIDELINE: Avoid vague words.

GUIDELINE: Avoid Using iswhen or iswhere.

Good: Anoverplot is an overlap between two or more graphic entities drawn at the same place on a page

Bad: Anoverplot is when two things overlap

GUIDELINE: Define a particular status as a list of possible states.

Example: A proposal’ s approval statusisits current stage in the process for granting or denyingit: awaiting
department approval, awaiting chair approval, awaiting board approval, or denied.

GUIDELINE: Use team devel opment and review to build consensus for definitions.

Copyright 2002 Wirfs-Brock Associates 16

VI. A Template For Writing Use Case Descriptions

Hereis atemplate for filling in additional information that can accompany the description of the interaction
between the actor and the system. Several authors have proposed their versions of a Use Case Template. They are
similar but have slight differences. This discussion presents an overview of elements that can be part of a use case
templ ate.

A Use Case Template

Use case name

Preamble

Use case body (narrative, scenario or conversation)

Supplementary detail s and constraints

FIGURE 4. The partsof a Use Case Template

We recommend you start by adopting atemplate that is fairly lightweight (we include more informationin this
templ ate than you may need to get started). Depending on where you are in a project, you may start by only fillingin
part of the information in a templ ate...and then add more details in a second iteration. For example, you may start by
only writing a narrative and i dentifying the actor for the use case. Later, you may describe exceptions and add conver-
sations or scenarios that expand on the basic narrative.

It is useful to divide the template into three parts:

« the preamble- which defines the context of the use case
« the body - which describes the actor’ s interactions with the system, and
« supplementary information - which adds details and constraints on the use case’ execution

The Preamble

The preambl e contai ns i nformation that “ sets the stage” for the behavior described in the body of the use case
In the preambl e, you may find the following information:

» Level - summary, core, supporting or internal use case?

» Actor(s) - role names of people or external systems initiating this use case

» Context - the current state of the system and actor

» Preconditions - what must be true before a use case can begin

 Screens - references to windows or web pages displayed inthis use case (if a Ul is part of the system)

The Body

Description of the use case’ s behavior. This description can be;
* A narrative - a free form paragraph or two of text.
» A scenario - a step-by-step description of one specific path through a use case
» A conversation - a two-column (or more columns if showing dial ogs between multiple actors and/or system
components) description of the dial og between the actor and the system.

Inasingle use case, you may write a narrative, and, once you' ve worked out how the actor will interact with the
system, then write either a scenario or conversation. Nothing says that the body has to be restricted to one form. But
most of the time we see writers start by writing a very brief narrative (of just a couple of sentences), then write either
a scenario or a conversation that goes into more depth. They | eave both forms around—the narrative as an overview
(which only certain stakehol ders read) and the other as an in depth presentati on of actor/system interaction.

Copyright 2002 Wirfs-Brock Associates 17

Supplementary Details

» Variations - different ways to accomplish use case steps

» Exceptions - errors that occur during the execution of a step

 Policies - specific rules that must be enforced by the use case

* Issues - questions about the use case

» Design notes - hints to implementers

* Post-conditions - what must be true about the system after a use case compl etes
» Other requirements- what constraints must this use case conform to

 Priority- how important is this use case?

» Frequency - how oftenis this performed?

GUIDELINE: Whenyou start writing use cases, describe the key points. Typically, this means giving the use
case a name, identifying the actor and writing the use case body (one of the three forms).

GUIDELINE: Fill intemplate fields as informati on becomes available.

Asyouwrite a narrative, you may think of anissue or a note to the designer. Jot these down when you think of
them. Don't wait for the perfect time. The right time to add adetail iswhenit occursto you. Y ou can always note
afact, thenfill in more complete details | ater.

GUIDELINE: Make clear how complete ause caseis.

Daryl Kulak and Eamonn Gray in their book, Use Cases Requirements in Context identify four phases of a use
case description: facade, filled, focused and finished.

Whether you pick these four “ degrees” of compl eteness or some other measure of compl eteness, itis agood idea
to note whether a use case is afirst draft, whether it has been reviewed, when it has been revised or approved by
various stakehol ders, and “ signed off” as finished.

GUIDELINE: For more formal projects, i nformation about the current state and hi story of a use case can be
added to the templ ate..

Add this information as supplementary details. This lets readers of the use case see the main points first. If you
include this information are part of the preamble, it adds clutter that has to be scanned over before the reader
finds the main facts about the use case.

A use case description can start out simply, then get quite complex as templ ate details are filled in. Start simply, writ-
ing down what you know and issues that need to be addressed. Through several revisions and refinements get to a
“finished” use case.

VIl. The Narrative Form

Narratives are free-formtext in paragraph format. A narrative describes the intent of the user in performing the use
case, high-level actions of the user during the use case, and refers to key concepts from the problem domain that are
involved inthe use case.

Below is an exampl e narrative from the On-line Banking System Specifi cation Documents. We have briefly
described the purpose of Log In and what happens as a result of the user successfully completing the Log In. We've
also included a set policies that relate to logging in, and have listed some exceptions that may arise during Log In.

UseCase: LogIn

Log Inisthe primary entry point into the On-line Banking System. Log In verifies that the
user is previously registered with the On-line Banking System, and that s/he has correctly
entered user id and password information. After a successful login, aregistered user can use
the system's main functions. All others, regardless of whether they have registered or not,
have access to the On-line Banking System Demo and Regi stration Page.

Copyright 2002 Wirfs-Brock Associates 18

Recipe: Writing Use Case Narratives
1. Givethe use case a descriptive name.

GUIDELINE: Begin the use case name with an active verb.

2. ldentify the actor that uses the use case.
3. ldentify the intended audience of the use case.
4. Specify the actor’s goals for the use case.

GUIDELINE: Use active verbs to describe the actor’ sgoal.

5. Write a description consistent with the name and the user’s goal ; one that el aborates the use
case.

GUIDELINE: Maintain a single point-of-view: the actor’ s
GUIDELINE: Describe intent, not action.

GUIDELINE: Capturethe simple, normal use cases first. Youwill describe the variations as secondary use cases
later.

GUIDELINE: If the use case changes the state of some information, describe the possibl e states.
GUIDELINE: Write the use case description at a level appropriate for the intended audience.

GUIDELINE: Leave out details of user interface, performance, and application architecture. Put these detailsina
central document, and reference these requirements in the use case.

6. Describe any business rules or policies that affect the use case in a separate place: either ina
policies section bel ow the use case body; or inaglobal policies section. Reference globally
applicable rules or policiesin the use case policy section of the templ ate.

VIIl. Scenarios and Conversations: Writing More Detailed Usage Descriptions

One key to devel oping a usage model is knowing how much to describe. A closely related questionis, “ What' sthe
best way to present detailed information?’ Use case narratives are general descriptions about how a system supports
an actor’ s goal. There may be numerous ways to achieve any goal. Sometimes it hel ps to clarify things by concretely
describing actions and information for a specific situation.

Scenarios and conversations are forms that are useful to show in more detail how an actor achieve’ s a specific
goal.

How many use cases should be written? A glib answer: “ As many as it takes to get the main ideas across.” The
number is highly dependent on how close your intended audience is to the problem, and how many detail s they need
spelled out.

Here' s one general word of advice: Write to be read. If it clarifies and brings understanding to your system’ s
behavior, write narratives to describe the general situati on, then augment those narratives with specific descriptions.
If your readership only looks at detail s, narratives likely won't be of val ue.

GUIDELINE: High-level use case names state a general goal. Write one narrative use case for each general goal,
and as many scenarios or conversations as it takes to get the main i deas across.

For example:
Narrative: Make a payment
Describe what online payment means and typical ways of making them

Copyright 2002 Wirfs-Brock Associates 19

Write scenarios or conversations that describe more specific goals:
Scenario 1: Make arecurring payment

All the steps in paying my monthly phone bill ...

Scenario 2: Make a non-recurring payment

All the steps in paying afixed amount ...

Scenario 3: Make aregular payment

All the steps in paying a monthly loan ...

Sometimes, your use cases are read by diverse audiences. Some want to only see details. Others only want “ big
picture” overviews. Inthe interests of keeping everything together, and not creating a mai ntenance problem, we sug-
gest you bundle both a general and a specific description together in a single use case.

GUIDELINE: Writetwo “versions’ of the same use case: one version a narrative, the other version a more
detailed form.

Example:
First, write anarrative

The “ View Recent Account Activity” narrative describes generally how users view the current or previous
account period’ s transactions

Then, choose an appropriate form. Rewrite the use case body at this lower-level of detail

The View Recent Account Activity conversation includes the detail s of optional actions, such as downloading a
file containing recent transactions in several different formats
Leave the narrative as an overview. Consider adding an “ overview” section to your template if you have always
have diverse readers for your use cases.

What is a Scenario?

Scenarios are one means to describe a specific path through a use case. A scenario list specific steps toward that
goal. It describes a sequence of events or list of steps to accomplish.Each step is a simple declarative statement with
no branching. A scenario may describe:

 Actors and their intentions
» System responsibilities and actions

All steps should be visible to or easily surmised by the actor. We typical state a statement by naming who is per-
forming the step. Our goal isto convey how the system and actor will work together to achieve a goal. Even though a
scenario can show more detail, resist putting intoo much detail. Much of that detail can be placed in the preamble or
supplementary parts of the use case template.lt should be clear where a scenario starts. Describe the steps in achiev-
ing the actor’ s goal. End there.

For example, we might write a scenario toward the user’s goal of “ Register a Customer.” This specific scenario
explains a variation of this task called “ Register Customer with Auto-Activation.”

Example Scenario: Register Customer with Auto-Activation

1. User enters registration information:

» Required information: user name, email address, desired login ID and password, and confirmati on password
» One of: account number and challenge data, or ATM # and PIN

» Optional: language choice and company

System checks that password matches confirmation password.

System validates required fields and verifies uniqueness of login 1D

System verifies customer activation i nformation.

System creates and activates customer on-line account.

System displ ays regi strati on notifi cation.

oSOk wN

Copyright 2002 Wirfs-Brock Associates 20

Recipe: Writing Scenarios
The purpose of a scenario is to describe the flow of eventsin the use case. These events can be initiated by the user
or performed by the system, but should express the steps of the process as the user understands it.

1. For each use case, determine the “ happy path” to the actor’ s god.

GUIDELINE: Ignore other possible paths through the use case at first. Write these “ secondary” scenarios later.
GUIDELINE: Refer to the specific use case that the scenario elaborates, if the use case has been written.

2. Write a scenario as a sequence of steps, ordered by time.

GUIDELINE: Every step inascenario should be visible to or easily surmised by the user.
GUIDELINE: Write each step as a simple, explanatory statement.

GUIDELINE: Keep information and actions concrete.

GUIDELINE: Focus on ordering and definition of steps.

GUIDELINE: Factor lower-level details into new descriptions.

GUIDELINE: Keep steps ar roughly the same level of abstraction.

In following example, several steps have been compressed to keep actions at the same level.

Mixed level of detail:
1] Check for required fields
Capture user ID and password
2 Ask security component for validation

Issue SQL statements to security database for logon
authorization...

Open connection to bank server
Read account summaries...

Fixed:
1| Check for required fields
2 | Login user to domain
3 | Display account summaries and bulletin

3. Number the steps.
GUIDELINE: Don't get carried away. Keep the numbering one level deep. Remember, the goal is clarity.
4. Look for steps that might repeat within the scenario.

GUIDELINE: To show repetition, use repeat or while statements.

GUIDELINE: Avoid the tendency to write pseudocode unless your audience are programmers who only
understand code.

5. Look for steps that depend on a condition.

Copyright 2002 Wirfs-Brock Associates 21

GUIDELINE: To show that a step depends on a condition, use an if statement.

GUIDELINE: When the logic for expressing a conditional statement becomes too complex, write another,
alternative scenario.

GUIDELINE: Distinguish between variations and exceptions. Describe recovery from exceptionsin a
supplementary note or another scenario if the recovery is complex. Document variations in either a
supplementary note, or another scenario if the actions are interesting.

6. Look for sequences of steps that repeat across scenarios.

GUIDELINE: Don'tdo thisearly inyour project. Later, factor out portions of a scenario that repeat in other
supporting scenarios, give them a name, and refer to them within the core use case with a reference to the
supporting use case’ name.

7. Look for optional steps.

GUIDELINE: Preface optional steps or actions with “ Optionally,..” . Indent optional steps for clarity.

8. Show the range of values of data that is used in the scenario.

GUIDELINE: If the user changes the information, specify the possibl e states that the i nformation might go
through.

What is a Conversation?

A conversation describes a significant sequence of interactions between an actor and the system, or between one
part of our system and another. It is a detail ed description of a Use Case that clearly defines the responsibilities of
each participant.

There are two central parts to a conversation, a description of requests or inputs, and a corresponding description
of the high level actions taken in response. Together, these “ side-by-side” descriptions capture a sequential ordering
of communi cations.

Like a scenario, it can show optional and repeated actions. Each action can be described by one or more substeps

The focus of a conversation is to detail the types of interactions, the flows of information, and the first-level sys-
temlogic of the system, all from the user's point-of-view. If desired, it can also be used to drill down to the deeper
levels of systemlogic, as seen by a devel oper.

FIGURE 5. A conversation shows a dialog

Because of the various ways inwhich a user task can be performed successfully, there may be one or more conver-
sations for a single use case narrative.

Copyright 2002 Wirfs-Brock Associates 22

Often, it istoo big a gap to move directly frominformal Use Case writtenin narrative formto design. Also, use
cases written at this higher level are full of ambiguities and extraneous detail s that have little to do with what our sys-
tem must do for the user. As you restructure use cases i nto conversations, you add more detail by:

» showing branching and looping,

» describing constraints on what our software should do,

» describing the context in which the conversation occurs,

* identifying the actors that initiate the activity,

» defining the “ standard” course of action and alternativesto it,
* raising unanswered questions, and

* adding design notes.

TIP: Thissupporting information is often asimportant asis defining the order to the user's actions.

Notation

Use atable format to record a conversation several stylistic shorthand conventions. Other use cases invoked during
a conversation are marked in bold text. These use cases could be “ used” (UML's “includes’ relationship), or transfer
of control could passed viaa“ goto” . These control flow conventions proved extremely rel evant to the Ul designer
and application server i mplementation, but are unimportant to a high-level view of a use case.

Optional actions, for example (Indicate Setup Payees), are labelled. Show looping or repetitive steps by merging
adjacent cellsinarow to bracket the beginning and end of a block of repeated or optional actions:

Repeat

actions go here

Until proposed scheduleis built

FIGURE 6. Showing Repetition, or an optional block of actions

Copyright 2002 Wirfs-Brock Associates 23

Placing dialog in adjacent cells of the same row shows an interactive round (an actor action that invokes a nearly
simultaneous system response). Placing the system response in the row immediately after the provoking action
denotes a batch round.

Ador: Usr Sygam Apdlicetion
extlig of paymetETpasn
L = oty ey
SHatapaymatnpae AlA
detlsof sHened Paymert
Tarpaead reoat paymat
Dpayee
Bl paeerries amautard Multiple
Optional |smipametirorsion :
PUc o Y Actions
Action Atirew ot
M Dediglaytrepamatlis
mmlmmm%
, Edit Payment Tamplate
Infarmation
SHedtredfudion
Coosdeted uecae

Invoking Another Use Case

FIGURE 7. Conversation notation

Thisis an example of a dialog between the customer-user and the system. We used a table format to record this
dialog and several stylistic shorthand conventions. Other use cases invoked during payment were marked in bold text.
These use cases could be “ used” (UML’ s uses relationship), or transfer of control could passed viaa“ goto.” These
control flow conventions proved extremely rel evant to the Ul designer and application server i mplementation, but are
uni mportant to a high-level view of a use case.

In the on-line bank, our web-based interface design did not allow for simultaneous i nteractions; i nstead i nforma-
tion would be batched and passed al ong with an action tied to a button. A more traditional window application or a
Java appl et has the potential for many more overlapping activities.

Writing Conversations

Knowledgeabl e experts from diverse backgrounds can readily construct conversations. Conversations can either
be developed by a team or drafted by an individual then reviewed, explained, and revised by a small group. Itis
important that teams who devel op conversations blend the tal ents of devel opers, users, and other specialists. Each
contributor has a unique and val uabl e perspective. No perspective should dominate, yet a certain interest may take
center stage during a working session. It isimportant that side concerns be recorded, and worked through, perhaps as
an outsi de activity. Respect and appreciation for the concerns of others is important; teamwork and a spirit of joint
development is crucial. For example, in one working session, we dived into technical design details for several min-
utes, backed up to re-examine whether the flow of the conversation we had proposed was still workabl e, then summa-
rized what i ssues were solved and what new ones were raised by a single decision. Technical, user interface and
business i ssues were all discussed in a single session while holding everyone's attention.

One key to building a good conversationisto preserve its dual purpose of

Copyright 2002 Wirfs-Brock Associates 24

1. recording of the important events and i nformation that are conveyed between the user and the
system; and
2. guiding developers who will be creating the object design model.

To meet these objectives, conversations must be written at afairly high level. It oftenis the case that sequencing of
model responses (for exampl e the detail s of recording a payment transaction) are not accurate refl ections of the tasks
that the system must do. Y et, they need not be early on. What is important, is that an interdisciplinary teamis sketch-
ing out how they expect their software system to work.

Conversations capture the flow of communi cation between actor and system. If the nature or the amount of infor-
mati on changes significantly, the demands on your object model al so change. So we suggest that you include suffi-
cient detail, and reflect changing interaction and interface design if conversations are to actually gui de object
modeling.

What isadialog?

The basic form of conversationisthe dialog. A dialogis a conversation where both sides participate i n a structured
sequence of rounds of interaction. Each round is a pairing of an action taken by the user, and the software system's
response to this action. A round is one of two types. It is either an interactive round or a batch round. Aninteractive
round features interplay of user actions and system responses. For exampl e, the validation of a single key press
among many istypical of aninteractive round. In contrast, filling out several entry fields and then submitting themall
at once is a more typical of a batch round.

This sequence of rounds establishes a necessary ordering of the interactions, and details the individual activities of
the user and the system's response in each round. Many of our conversations between human actors and our system

are of thisform
Actor Actions System Responses

Batch | dothis
round And | respond by ..
| tell youthis... | am respond to what you
Interactive aretelling me and giving
Round ‘ you feedback while you
aretalking

FIGURE 8. General form of a conversation

Choosing Between Conversations and Scenarios

The detailed form you choose to use depends on two primary factors:
» whether or not your system has meaningful dial ogs betweenits users; and
 personal preference
Use a scenario when:
» asimplelist of actions is sufficient
* actor-systeminteractions aren't interesting
Chose a conversation when:
« there are many interactions and you want to describe them
» youwant to show more details in your system responses
» youwant to separate the roles of actor and system and clearly identify at each point the system does for the
actor
We have written conversations for systems where there isn't alot of interaction between actor and system. This
becomes readily apparent from | ooking at the staggered pattern of filled in cells.
Most projects write high-level use case narratives, then standardi ze on one of the two more detailed forms to
describe all use cases. Whether you want to write conversations or scenarios may not be obvious until you understand
the nature of your system’ s interactions withits users.

Copyright 2002 Wirfs-Brock Associates 25

Recipe: Writing Conversations

GUIDELINE: Writeaconversationif itisimportant to show the patterns of i nteracti on between the actor and the
system.

GUIDELINE: Write aconversationif you want to show the first cut at system-actor actions in greater detail.

GUIDELINE: If you have written a scenario and find that it does not offer you enough detail, rewriteit asa
conversation.

1. Listthe actor actionsin the left column and the system actions in the right column.

GUIDELINE: Leave out presentation details.
GUIDELINE: Maintain a consistent level of detail.

GUIDELINE: Don’t embed alternatives in your action descriptions.

It can get complicated for your readers to deciphers nested “ if then... else, if..” statements if they are liberally
sprinkled through your action statements. Y ou can keep the statements simple if you write the “ happy” path
description in the body of the conversation. Call out exceptions and variations below.

Pseudo-code:
Conversation: Regi stration with Automati c-Activation
10. If bank supports automatic activation
withATM and PIN then...
If ATM and PIN #s arevalid then....

Fixed:

Conversation: Registration with Automati c-Activation

10. Validate ATM and PIN #

Exception
Step 10: ATM and PIN #s areinvalid- Report error to user

GUIDELINE: Don’t mention “ objects” in system responses.

Remember that your readers what to know what is happening from an external perspective, not what the system
i s doing behind the scenes. For exampl e, rather than stating “ create customer and account objects” you can
rewrite the system’ s response to more clearly explain what the system has done to benefit the actor: “ record cus-
tomer account i nformation” .

GUIDELINE: Write conversations with a small group (maxi mum of 3).

When we first started defining the On-line Banking System, we wanted every devel oper to understand all facets
of the system. This quickly proved impractical and slowed everyone down. So, two of us focused on use cases
and conversations, i nteracting primarily with the system architect and domai n expert. Eventual ly one person took
over maintai ning use cases; everyone el se used them as reference material . For exampl e, the devel oper who
designed and i mplemented the application server only raised questions when conversations were unclear or
inconsi stent, and was quite content to not always work from the latest documentati on until things settled down.
The project manager and project sponsor didn't read these documents at all (unlike other projects we've worked
on where management enjoys reading and commenting on themin detail).

2. When the system has an immediate response to an actor action (such as validating a key
stroke), list themin the same row.

Copyright 2002 Wirfs-Brock Associates 26

7.
8.

GUIDELINE: Leave out information formats and validation rules.

These are best kept in a separate place that can be maintai ned and updated as business procedures and policies
may change. Only summarize what information is presented to or collected from the actor in the conversation.

Rules and information model embedded:

User Name: First name, last name (24 characters maxi mum, space
delimited)

email address with embedded @ sign si gnifying break between use
identification and domain name which includes domain and sukt
domain names delimited by periods and ending in one of: gov,
edu...

Fixed:
Required: user name, email address, desired login ID and passworc
One of: account number and challenge data, or ATM # and PIN

When the response is delayed until an entire actor actionis complete, list it inthe row imme-
diately below the row with the actor action.

Write any assertions about the software’s states during the conversation.

As you consider the actions in the conversation, document any ideas about “ how” inaDesign
Notes section.

Test the conversation with a wal kthrough.

GUIDELINE: Use specific examples to walk through use cases and conversations.

GUIDELINE: Tryingto abstract or write more general conversations too early tends to create problems. Itis
better to deal with specific situations first, then review and combine things as appropriate, after you have the big
picture. This strategy | ed us to write different conversations to record different typical uses. For example, we
discovered two common ways customers could make payments, one for paying same amount to the same vendor
and one where the amount paid varies. This led us to write two separate conversations, Make Similar Payment
and Make Payment. In version two, when we would support automati c payments, Make Recurring Payment
would be added to our Payment Use Case conversations.

Check conversations for compl eteness.
Rel ate the conversati ons through their preconditions and postconditions.

IX. Other Descriptions, Exceptions and Variations

“ Other” requirements are those that are not captured within the body of a use case, or within or within other parts of
the use case template. They can either be kept in a central place or can document the use case where they seem to
apply. Infact, if you are following a rigorous requirements specification process, you may gather and record many
requirements that, while they may i mpact your system’ s usage and design, belong el sewhere.

K eep Common Requirementsin a Central Place

GUIDELINE: Document requirements spanning use cases in a central place.

For example: “ Financial transactions must be secure.” , and “ System must run 7x24”

GUIDELINE: Refer to specific “ central” requirements by name in the use cases that they impact if thisimpact is
not obvious to the reader and it’ simportant to know.

Copyright 2002 Wirfs-Brock Associates 27

Note Specific Requirementsin Use Casesthey Affect

GUIDELINE: Document specific requirements in the use case that they pertain to.

For example: “ Registrati on response time must be | ess than one minute.”

GUIDELINE: Look for requirements that are invisible to the actor.

For example: “ System must not lose any requests”, or “ Application servers will be widely distri buted”

GUIDELINE: Look for performance requirements that affect system behavior.

Design Notes

Design notes, if part of your use case template can “ round out” your usage descriptions with ideas that occur to you
that might be useful during design. Since a use case isn't a descriptions of a solution, don’t write these details there.
But if you think of a good design idea, you may want to jot it down and keep it with your use cases.

GUIDELINE: Add design notes as they occur to you when writing scenarios and conversations.

For example: “ Errors and warnings about regi strati on i nformati on contents should be collected and returned to
the user in a detail ed message rather than stopping at the first detectable error” , and “ Payments should be shown
intime order, with the current date first.”

GUIDELINE: Write design notes as hints or suggestions, not as i nstructions to the designer. Don't be too
detailed.

Alternatives

Di sti ngui shing which courses of action are the “ main” paths is often difficult. We have two options for documenting
alternative courses of action (variations) and points of potential error (exceptions) ina use case. If the alternative can
be stated simply, we embed if-statements in the description. For a slightly more complex alternative, we note these
alternatives in supplemental text below the basic path. Or, when the alternative flow of events is complex, we can
write compl etely new use cases for these alternatives. In the latter two situati ons, we reference the point in the origi-
nal use case where the alternative takes place.

Variations

A variation can be a different action on the part of either the actor or the system. When you see this possibility, be
opportunistic! Don't let the insight go by. Capture the conditional choice in anif statement, describe the differencein
supplemental text below the use case body, or write another use case. One that i ncorporates the al ternate action. Note
the name of the new use case so that you canwriteit later.

Exceptions

On the other hand, actions that have the potential for errors, again, on the part of either the actor or the system.
Treat these errors similarly to variations, but note them under a separate heading in the supplementary part of the use
case templ ate. They are the source of many of the error-handling requirements of the system.

GUIDELINE: Describe the exception and its resol ution. Identify whether it is recoverable (e.g. the actor can
continue on with his/her task in some fashion) or unrecoverable.

GUIDELINE: For each recoverable exception describe how the actor/system needs to respond to make forward
progress.

GUIDELINE: For each unrecoverable exception, make clear what state the system returns to after detecting this
condition, and how the actor is notified of this condition.

Copyright 2002 Wirfs-Brock Associates 28

Activity Diagrams
Activity Diagrams are a UML standard way of describing sequences of actions, the dependencies among them, and
the parallelism and synchroni zation characteristics. Use them as a way of visualizing activities at several levels: the
process level that demonstrates how different use cases interact, the task level that shows the activities of a user when
performing a use case, and the subfunction level that shows the internal workings of a single step, whether it be per-
formed by a user or a computer program.

These el ements show an activity (the oval), synchronization of activities (the synchronization bar), decisi on-mak-
ing (the diamond), pre and post conditions (the guards, text inside the square brackets annotati ng the arrows), and
iteration (the asterisk on annotating an arrow).

L
\

*

for each payment [no] /F
[yes]

This activity diagram demonstrates the acti ons that take place when“ Making a Payment” . It is at the task | evel and
describes a single use case.

Choose Acct

[default]

Customer Access
Payment Enter Amount
Screen

Choose
Vendor

Submit Verify
Payment Payment

i

GUIDELINE: Use an activity diagram to describe a single use case. The goal is to understand what actions that
take place and the dependencies between them

GUIDELINE: Use an activity diagram to understand workflow across use cases. Activity diagrams are great for
showing connections and dependencies between the use cases of an application.

GUIDELINE: Use an activity diagramto show parallel activities. Activity diagrams are particularly good at
showing parallelism, synchronization, and pre and post conditions.

Recipe: Writing Exceptions

The typical paths through the use case is specified in primary descriptions. Alternatives to these paths can be writ-
ten as secondary use cases, or named in variations and exceptions sections.
1. Look for potential exceptions in each primary use case.

GUIDELINE: Whenlooking for exceptions, ask:

* |sthere something that could go wrong at this point? (exception)
* Isthere some exceptional behavior that could happen at any time?

Copyright 2002 Wirfs-Brock Associates 29

GUIDELINE: Be opportunistic! Document the exceptions whenever they occur to you.
The first step is identifying the exception. The next step is resolving how it will be handled.
GUIDELINE: Keep the exceptions at the same level of abstraction as the use case description.

2. Determine which exceptions should be written as separate use cases.

GUIDELINE: Defer writing these secondary use cases until you feel satisfied with your primary ones.
GUIDELINE: Write secondary use cases according to the recipe and guidelines for primary ones.

3. Document the exceptions.

GUIDELINE: Describe the exception condition. Note whether it can be recovered from or not. Describe the
actions the actor or system take to recover; or to end the use case in an unrecoverabl e situation.

GUIDELINE: Choose the clearest way to describe how the exceptionis handled

Options include:

* Briefly describe what happens, or
 Refer to another use case that describes the exception handling

4. Refer to the place inthe original use case where the exception takes place.

GUIDELINE: Insert footnote numbers or tags into the main scenario, and tag the alternatives with the same
number.

Recipe: Writing Variations

The typical path through the use case is specified in the body of the use case. Alternatives to these paths can be
written as secondary use cases, or named in variations sections.
1. Look for potential alternatives in each use case body.

GUIDELINE: Whenlooking for variations, ask:
* Isthere some other action that can be taken at this point?
GUIDELINE: Be opportunistic! Document the variations whenever they occur to you.
2. Determine which variations should be written as new use cases.
GUIDELINE: Defer writing these secondary use cases until you feel satisfied with your primary ones.

GUIDELINE: Write secondary use cases according to the recipe and guidelines for primary ones.

3. Document the variations.

GUIDELINE: If the variationis easily added to the use case body, put it there. Show that variations are optional

by indicating that one of several choices can be made for a particul ar step.

GUIDELINE: If the description of variations clutters up a use case description, write about it in the
supplementary part of the use case templ ate.

Refer to the place inthe original use case where the variation takes place.

Copyright 2002 Wirfs-Brock Associates

30

GUIDELINE: Insert footnote numbers or tags into the main body, and tag the variation with the same number.

Assertions

Assertions about our system’ s behavior are useful for:
» Generating the flow of system events
» Determining use case dependency rel ati onships
 Understanding the states of the application
We make three kinds of assertions. preconditions, postconditions, and constants.

Pre-conditions

Pre-conditions are what must be true of the state of the application for the use case, scenario or conversation to be
applicable. They can also imply the possibility of some order of the use cases, aswe will see inthe next section on
post-conditions.

Post-conditions
Post-conditions are what must be true of the state of the application as a result of completion of the use case, sce-
nario, or conversation.

For exampl e, inthe On-line Banking Make a Payment use case, debiting an account | eaves the systemin one of two
states:

* InGoodStanding
* OverDrawn

These post-conditions of Make a Payment |ead to two different system states. Inthe first case: “ OverDrawn” leads
to not permitting another make payment use case to execute (until the Account is InGoodStanding) because InGood-
Standing is a precondition for Make a Payment. In the second case, InGoodStandi ng enabl es another Make a Payment
to be executed.

GUIDELINE: Document pre and post-conditions where the system responds differently as a result.

We have seen many peopl e struggl e with the question, “ what' s a good post condition?’ A bad post condition
adds clutter and doesn’ t add any i nformati on. Restatements of the actor’ s goal don' t add information. If the goal
isto Make a Payment, then saying that a payment has been made doesn’t add any information. A good test of a
post-conditionis that it states somethi ng about the system that may or may not be obvious from compl eting a use
case. And, ideally, a post-condition may enabl e another use case to be executed.

Example of a poorly stated post-condition that restates the use case goal:
Post-condition: Customer has withdrawn cash

So what? The customer receives cash but what does this say about the next time he/she wants to withdraw case,
or any other use case?

Fixed:
Post-condition 1: Account balance is positive
Post-condition 2: Account is overdrawn

Note that the user may have achieved his/her goal, to withdraw cash, but depending on the amount withdrawn
and the account’ s balance, his/her account may be in one of two possibl e states after successfully withdrawing
cash. Now that’ sinteresting!

GUIDELINE: Specify pre- and post- conditions only when you need to be formal
Once you add pre- and post-conditions to one use case, you will need to add them to dependent ones! A use case

model that only has pre and post-conditions on a few use cases begs the question, is this complete or are there
gaps in this specification?

Copyright 2002 Wirfs-Brock Associates 31

GUIDELINE: Check for completeness of use case dependenci es by asking how each use case is enabled, and the
conditions it sets that enabl e others.

Exampl e: Pre-conditions should make clear when a use case can execute

An account must be in good standing and the daily withdrawal limit not exceeded in order to withdraw cash
Post-conditions may be rel evant to other systems

Being overdrawn may trigger transaction fees
Pre-conditions may be set by other systems

An account can be overdrawn through direct payments

GUIDELINE: Complete the specification of pre and post-conditions by documenting the possibl e states of the
system after each exceptional condition, and each variation of a step.

Example:
Often, there are multiple post-conditions for one scenario or conversation
At least one for each successful goal...
Customer receives cash? Account is overdrawn or Account balance is positive
One for each exception...

Account daily limit woul d be exceeded - Customer withdraws lesser amount? Account is in good standing and
Account daily withdrawal limit reached

Amount would exceed overdraw limit - We refuse to disburse cash? account is in good standing
One or more for each variation...
Fast cash? Account is overdrawn or Account balance is positive

Constants

Constants, sometimes called invariants are what must be true of the state of the application during the entire
progress of the use case, scenario, or conversation. They are often contextual and must not be changed at any moment
during the use case.

GUIDELINE: Be careful about getting too formal. Assertions tend to make requirements | ook incompl ete if they
vary intheir formality.

GUIDELINE: Use pre-conditions to make it clear when a conversation might execute.
GUIDELINE: Write post-conditions as if you were going to use them as a basis for writing a test plan. You are.

GUIDELINE: Write constants to describe conditions that should not change during the conversation.

X. Use Case M odel Checklist

At the end of the day, the goal of a usage model is to convey how a system behaves and responds to its users. A good
usage model conveys how a system behaves, and how behaviors are related.
Y ou can look over a use case model to:

» Check for internal consistency between use cases

* Identify “ central” use cases

« Identify unmet or externally satisfied preconditions

» Review the actor’ sview for completeness

» Review the handling of exceptions

 See that use case dependencies, extensions and i ncludes rel ati onshi ps have been documented

Copyright 2002 Wirfs-Brock Associates 32

Organizing Your Use Cases

Organizing use cases is important. A pile of usage descriptions, arranged al phabetically, doesn't orient readers to
the usage terrain. We suggest that you choose an organi zation that hel ps orient your typical reader.

Some possi bl e organi zati ons:

* by level (summary first, core next, supporting, theninternal ones last)

by actor

* by type of task

arranged in a workflow

Be consistent. Keep various forms of a single use case together.

XI. A Use Case Writing Process

The task of writing can be shared, but the best way to devel op acommon language i s for teams to work on devel oping
arhythmto their work. Sometimesiit is best to get group consensus, othertimesiit is best to work alone (or ina small
group) to create use cases that others can review. Writing, like programming, can be done solo, thenreviewed as a
group. Once you pick a templ ate and | earn the common ideas, you can try writing solo, then critiquing as a group.
Group review can lead to a common style and format for usage descri ptions. We suggest this process as one way to
work collectively and individually to devel op a use case model :

Full Team Small Teamsor The Products
Individuals
Align on scope, level of Actors, Candidate
abstraction, actors, goals, Summary Use Case
point-of-view Names
Write summary Narratives
descriptions
Callect and clinic, Candidate Core Use Case
brainstorm key use cases Names
Write detailed Scenarios OR
descriptions conversations
Callect and clinic, identify Potential new Use Cases
gapsand inconsistencies
Revise and add precison | Revised Use Caseswith
Supplementary Details

FIGURE 9. A Processfor Developing a Use Case M odel that includes both team and individual work.

Note: Although not everyoneis askilled writer, most devel opers can write good use cases. It is a matter of writing
and reading good use cases (and then adopting a common style). This involves practice and critical review.

XIl. Tipsand Techniques

We have pulled many commonsense writing guidelines from Ben Kovitz' s wonderful book Practical Software
Requirements. They were either paraphrased or taken verbatim from his chapter on writing. Other guidelines on what
extra efforts can have big payoffs come from our experience. If you apply these principles to your writing of use
cases and other technical writing, your readers will be the beneficiary of your efforts.

Copyright 2002 Wirfs-Brock Associates 33

Broad Principles

GUIDELINE: Read other people’ swriting. If your own documents are hard to understand, you don’t notice
because you already know what it’ s supposed to say.

Writingis acraft. If writingis alarge part of your job, people will judge you not on the basis of your thinking,
but on the basis of your writing.

GUIDELINE: Write for human beings.

* Isthere away to express this that would be easier to understand?

» Am| overloading the reader with too much information at once? Should | provide some sort of roadmap, or
break it up into smaller sections or smaller sentences?

» Which details are more important to my readers and which are less important? How can | make clear which
details are which?

* Isthis statement too abstract for my readers to understand without illustration? Are these details too narrow
and disconnected for my readers to understand without expl ai ning the underlying principle common to them all?
» What reasonabl e misinterpretati ons could my readers make when reading this passage?

» Will my readers see any benefit from reading this section? How does it relate to my specific reader’ sjob?
Does anyone have a reason to care about this? Will people see this as a waste of time?

e What is the feel of the writing?

* |sthe document boring? Would anyone want to read it?

GUIDELINE: Choose the best alternative for expressing your thought, despite the rul es.

GUIDELINE: When you have information that can be presented inalist, it is usually the best way. People like
lists

GUIDELINE: Choosingthe way to say something should derive from the content.

GUIDELINE: use aconsciously designed organization for your document. Thenthereis* aplace for every detail,
every detail inits place.”

GUIDELINE: Reinforcement makes a document understandable. Illustrations, overviews, section headings.
Repetition, on the other hand, is decoy text.

Decoy Text

GUIDELINE: Avoid metatext. Text that describes the text that foll ows.

GUIDELINE: Avoid generalities.All information in a requirements document should be specific to the software
to be built.

GUIDELINE: Avoid piling onwords or explanations.

Remove clutter at all levels. You can clutter sentences, words, paragraphs, or sections of documentation with
extra meaningless words. Overbearing templ ates al so contribute to clutter.

An exampl e:

Piling on: Business Use Case
Clutter Removed: Use Case

Another exampl e:
Piling on: Requirements Specification Document
Clutter Removed: Requirements

GUIDELINE: Keep extraneous documents out of your requirements document. Schedul es, acceptance criteria,
traceability matrices, feedback forms, etc.

Copyright 2002 Wirfs-Brock Associates 34

Avoiding Common Mistakes

GUIDELINE: Put related material together. Avoid making your document a jigsaw puzzle.

GUIDELINE: Don't mix requirements with specification. The what with the how. Don’ t confuse means with
ends.

GUIDELINE: Choose the most appropriate vocabulary for expressing a requirement. Don't force fit your
descriptions into i nappropriate diagrams, charts, and tables just because they are “ usual” .

GUIDELINE: Avoid “ Duckspeak” (from 1984). Meaningless sentences expressing conformation to standards.

For example, “ The order data validation function shall validate the order data.”
GUIDELINE: Know the vocabulary of your readers and use it. Don't i nvent unnecessary terminol ogy.
GUIDELINE: Be aware of what content you are putting in your document. Don't mix levels.

Jumping back and forth between program design, requirements, and specification will only confuse the reader.
GUIDELINE: Don't start with a table of contents taken from another document.

Thisis equivalent to forcing the content of one document into the tabl e of contents of another
GUIDELINE: Use consistent terminol ogy.
GUIDELINE: Don't write for the hostile reader. Assume the reader will try to understand.

GUIDELINE: Make the requirements document readable. If it is not, the development staff won’t read it.
Poor Uses of Documentation

GUIDELINE: Avoid documentation for the sake of documentation. Don't try to make your documentati on an
end initself.

GUIDELINE: Requirements documents are not written to impress the customer with doubl e-talk.

GUIDELINE: Don't write a CY A document. In these cases, most i nformati on must be communi cated to the
devel opment staff by oral tradition.

GUIDELINE: Write questions about unsolved issues.

Put themwith the appropri ate use case description (or with the document you are working on) to show you' re not
done.

Example: Should the credit check be performed after the Order is submitted or before? What happens if creditis
denied?

GUIDELINE: If you are unclear about a detail, don’ t write fiction; it could become fixed.

Guidelinesfor each element of a Use Case Template

In addition to the above general guidelines for writing, we offer these specific guidelines for writing use cases drawn
fromour direct experience.

Use Case Name:
A name of some actor task to be accomplished with the system. Name it from the actor’ s point of view

Copyright 2002 Wirfs-Brock Associates 35

Good Example: Place an Order, or Cancel an Order, or Make a Payment
Bad Example: Process Order Record

This is named from the system' s point-of-view

Bad Example: Placing an Order

Thisis not stated with an active verb

Narrative Description:
Ahigh-level narrative paragraph describing activities of a task

Actors:
Role names of Person or External Systeminitiating this use case

Good Example: bank customer

Bad Example: novice user

Thisisaskill level, not arole. If novices do things differently, than skilled users, then perhaps their different
forms of interaction might be described... but the role is user (not novice or skilled user)

Context:

A description about the current state of the system and the actor

Level:

Good Example: The bank customer is a primary user

Bad example: The customer wants cash

So what? Expressing desires clutter our descriptions. Always assume actors want to accomplish some goal,
and that the systemis ready to respond. Don’t state the obvious.

Bank customer: The bank customer islogged on

Thisis obvious. Don't state the obvious. It adds clutter.

Isit Summary, Core, Supporting or Internal ?

Example:

Place Order (summary)

Order Long Distance Phone Service (core)
Enter Customer Address (supporting)
Obtain Secure Connection (internal)

Preconditions:
Anything significant about the system that must be true. Usually stated in terms of key concepts and their states.

Good Example: A bank customer’s account isin good standing
This must be true before he can make a withdrawal

Bad Example: The bank customer islogged in

Thisis context, not something true about the state of the system

Post conditions:

Anything that has changed in the systemthat will affect future system responses as a result of successfully com-
pleting the use case. Usually stated in terms of key concepts and their states.

Good Example: The bank customer’s account is overdrawn
This means that the customer cannot make another withdrawal until the account balance is positive

Bad Example: The bank customer received cash
This says nothing about how the systemwill respond in the future

Copyright 2002 Wirfs-Brock Associates 36

Business Policies:

Business specific rules that are always true that must be enforced by the system.
Test for whether a policy is application specific or a business policy: Who established this policy? Was it the applica-
tion designer, or was it the way we do business?
Good Example: Shipping dates must not fall on Sunday or holidays
Bad Example: The system must determine the shipping date
Thisis a statement of something the system must do, a system responsibility, not a rule that the systemwill
enforce.

Application Policies:

Limits on the way than an application can behave.
Here's a simple test for whether a policy is application specific or a business policy: Who established this policy?
Was it the application designer, or is this the way we do business?
Good Example: A user cannot incorrectly enter a password more than three times during a login attempt
Bad Example: The password is encrypted then matched with the stored encrypted password

This states how the systemis going to validate the password, a systemresponsibility

Alternatives:
Deviations from a step that occur due to exceptions or decisions made by the system or actor. An alternative can

either be a variation or an exception.
Variations Optional actions for a step that are normal variations (not errors)

Exceptions Errorsthat occur during the execution of a step
An alternative form can be written as either
e Step number. Variation or Exception Name — Brief statement of how this alternative will be
handl ed,

Example:
Scenario: Identify Customer
1. Operator enters name
2. System finds and displays near matches

Variations:

la. Operator enters billing address
1b. Operator enters phone number

1c. Operator enters customer address

Exceptions:
2a. No near match found—Notify operator to retry search
2b. Too many near matches found—Notify operator how many matches were found, and give option to nar-

row search or display matches
or, if handling the alternative warrants it:

» Step number. Reference to Use Case that describes the interactions with the system to handle
the alternative
Good example:

Scenario: Identify Customer
1. Operator enters name

2. System finds and displays near matches

Exceptions:
2a. Too many near matches found—use Narrow Search Request

Copyright 2002 Wirfs-Brock Associates 37

Issues:

Questions that need to be resolved about this use case, scenario or conversation.
I ssues should be stated simply. If you know who should resolve this issue, identify them.
Good Exampl e:
Should a credit check be performed for new customer before placing orders? Should credit checking be
performed if an order exceeds a certain amount? To be resolved by: John
Bad Example:
What about credit checking?
(What is meant by this question? Isit unclear exactly what the issue with credit checking is.)

Design Notes:
Design decisions that occur to you as you describe the usage
Good Exampl es:
I f the bank does not permit automatic activation, the fieldsfor ATM and PIN number should not be dis-
played. (Hints to the application designer)
User Beware! If the user entersan incorrect ATM PIN number, it is possible that he could be suspended

from use of his’her ATM. We must be sure to let the user know about that error.
(Important notes about how the errors should be presented to the user—from the analyst’ s per spective)

Bad Example:
All errors should be reported to the user.
(Too vague. What's a designer to do with this note?)

Screens:

References to windows or web pages that are displayed during the execution of this use case
Good Exampl es:
Include areference to a hand drawn “ sketch” of a Ul or a mock-up (thisis good in early prototyping).
Include a prototype screen “ captured” off the display. Label important important elements where infor-
mation is gather and/or presented, and important user actions occur.
Bad Example:

Include detailed screens after they are implemented
(Too specific. What' s the point of showing this level during requirements?)

Priority:

How important is this?

Freguency:.

How often thisis performed?

Good Example: 200 times a month
Bad Example: 200 times (What’ s the unit of time?)

Copyright 2002 Wirfs-Brock Associates 38

