
1Copyright 2001, Wirfs-Brock Associates, Inc.

The Art of Writing Use
Cases

The Art of Writing Use
Cases

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com
John Schwartz
john@wirfs-brock.com

www.wirfs-brock.com

2Copyright 2001, Wirfs-Brock Associates, Inc.

Goals
The goal of this course is to enable you to

– understand use case models: actors, use cases,
glossaries and use case diagrams

– use three forms of use case descriptions
– write effective use case descriptions
– critique use case descriptions
– relate use cases to business policies, UI

prototypes and other requirements
– add detail and precision to use case descriptions

3Copyright 2001, Wirfs-Brock Associates, Inc.

Agenda
Use Cases, Actors and Glossaries

Exercise 1: Find Use Cases and Actors

Let’s Tell a Story
Exercise 2: Write Use Case Narratives

Scenarios and Conversations: Tips and
Guidelines
Exercise 3: “Clinic” a Scenario
Exercise 4: Write a Conversation

Alternatives: Exceptions and Variations
Exercise 5: Describing Alternatives

Scope of Tutorial

Marketing List

Data Models

State Models

Responsibility-
Driven Analysis

Responsibility-
Driven Design

Object Analysis

Problem Definition

System Description

Candidate Objects
Information
Essential Behavior
Responsibilities
Collaborations

Conceptual Models
Process Descriptions
Usage Characteristics
Assumptions & Constraints
Functional & Nonfunctional Requirements
Domain Concepts

Usage Model
Actors
Narratives, Scenarios and Conversations
Glossaries: Concepts, Behaviors, etc.
Activity Diagrams
User Navigation Model
UI Prototype
Candidate Domain Objects

Roles, Responsibilities and
Collaborations
State Models
Control Architecture
Candidate Classes
Class Inheritance Hierarchies
Design Level Conversations

Exploratory Design

Refinement
Decision & delegation models
Refined class definitions
Class and Object Diagrams
Sequence diagrams
Packages
Code
Contracts
Interface Definitions
Invariants

Conceptual
Models

5Copyright 2001, Wirfs-Brock Associates, Inc.

Use Cases, Actors and
Glossaries

Use Cases, Actors and
Glossaries

6Copyright 2001, Wirfs-Brock Associates, Inc.

A Context

+Process Techniques

Values

Principles

In
iti

al
 P

ro
bl

em

Pr
od

uc
t

7Copyright 2001, Wirfs-Brock Associates, Inc.

Tell a Story
Cover the basics

– Key requirements for your application: use cases,
scalability, etc.

– Glossary can assist

Unfold your story
– Choose the right form
– Choose a level of detail appropriate to your

audience
– Don’t tell everything at once. Reveal details as

needed
– Consider different actors’ perspectives

8Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case

Functionality from a particular point-of-view

A collection of task-related activities...
Online Banking Use Cases

making a payment
transferring funds between accounts
reviewing account balances

… describing a discrete “chunk” of the system

Use cases describe a system from an external usage
viewpoint

9Copyright 2001, Wirfs-Brock Associates, Inc.

Function and Form

The Writing Task

Present overview

The Use Case Form To Use

Narrative

Scenario
(step by step)

Conversation
(dialog)

Describe
sequence and
add details

10Copyright 2001, Wirfs-Brock Associates, Inc.

First Form: A Narrative
Make a Payment

The user can make online payments to vendors and
companies known to the bank. Users can apply
payments to specific vendor accounts they have.
There are two typical ways to make payments:
the user can specify a one-time payment for a
specific amount, or establish regular payments
to made on a specific interval such as monthly,
bi-weekly, or semi-annually.

11Copyright 2001, Wirfs-Brock Associates, Inc.

Narrative Form

Free-form text in paragraph format

Describes the intent of the user in performing the use
case

Describes high-level actions of the user during the use
case

Refers to key concepts from the problem domain that
are involved in the use case.

12Copyright 2001, Wirfs-Brock Associates, Inc.

Second Form: A Scenario
Register Customer With Automatic Activation

1 User enters registration information:

Required information: user name, email address, desired login ID and
password, and confirmation password

One of: account number and challenge data, or ATM # and PIN

Optional: language choice and company

2 System checks that password matches confirmation password.

3 System validates required fields and verifies uniqueness of login ID

4 System verifies customer activation information.

5 System creates and activates customer online account.

6 System displays registration notification.

13Copyright 2001, Wirfs-Brock Associates, Inc.

Scenario Form

One particular path through a use case written from the
actor’s point of view

Describes a sequence of events or list of steps to
accomplish

Each step is a simple declarative statement with no
branching

May describe:
– Actors and their intentions
– System responsibilities and actions

14Copyright 2001, Wirfs-Brock Associates, Inc.

Third Form: A Conversation
Make A Payment

Actor: User System: Application
 Present list of payment templates to

user organized by payee category

Select a payment template
 Present details of selected Payment

Template and recent payment
history to payee

Enter payee notes, amount and
account

Submit payment information

 Apply payment to payee
Add new payment to recent
payment list
Redisplay the payment list

Optionally, request Setup Payments
Goto Edit Payment Template

Information
Select next function

Goto selected use case

Optional
Action

Multiple
Actions

Invoking Another Use Case

General
Flow

15Copyright 2001, Wirfs-Brock Associates, Inc.

Conversation Form

One path through a use case that emphasizes
interactions between an actor and the system

Can show optional and repeated actions

Each action can be described by one or more
substeps

May describe:
– Actor actions
– System responsibilities and actions

16Copyright 2001, Wirfs-Brock Associates, Inc.

Comparing the Three Forms
Form Strengths Weaknesses
Narrative • Good for high-

level summaries
and intentions

• Can be
implementation-
independent

• Easy to write at too high
or too low a level

• Not suitable for complex
descriptions

• Can be ambiguous about
who does what

Scenario • Good for
step-by-step
sequences

• Hard to show parallelism,
arbitrary ordering or
optionality

• Can be monotonous
Conversation • Good for seeing

actor-system
interactions

• Can show parallel
and optional
actions

• Easy to write to pseudo-
code

• Difficult to show
repetition

All Forms • Informal • Informal

17Copyright 2001, Wirfs-Brock Associates, Inc.

The Benefits of Use Cases
Use cases describe a system from an external

usage perspective

They can be organized according to their
relevance, frequency of use, and perceived
value to the system’s users

System features can be correlated with how they
are used within specific use cases

Impacts of adding and/or removing features on
system usability can be analyzed

18Copyright 2001, Wirfs-Brock Associates, Inc.

Use Cases Aid Understanding

Capture information in a natural way
Users:“You mean we’ll have to …????”

Discover “holes” in the understanding of a
system
Sponsors:“You left out one thing here ...”

Organize work supported by the system
Developers:“Hmm, these aren’t just a bulleted

list of functions!”

19Copyright 2001, Wirfs-Brock Associates, Inc.

Use Cases Vary by Abstraction
Level

Steve Registers for English 101, or

Student Registers for Course, or

User Uses System, or

Student Registers for Variable Credit Course, or

Student Registers for Music Course

20Copyright 2001, Wirfs-Brock Associates, Inc.

Use Cases Vary in Scope

Which system boundary do we mean?

component: describing the web applet

application: online banking

organization: the bank

We typically start by describing application level
scope

21Copyright 2001, Wirfs-Brock Associates, Inc.

Use Cases Vary in Detail
Do we describe general actions?

Enter deposit amount

or specific details?
Press number keys followed by enter key

Write at the level that seems appropriate to your
readers

This typically means describing actor actions and
system responses that match the goal for the use
case

22Copyright 2001, Wirfs-Brock Associates, Inc.

What Use Cases Cannot Do

Use Cases are best used to describe system
functionality from a task-oriented perspective

They do not describe:
– user interfaces
– performance goals
– application architecture
– non-functional requirements

23Copyright 2001, Wirfs-Brock Associates, Inc.

Finding Use Cases

Describe end user goals supported by the
system…
“Transfer money between accounts...”
“Get money...”
“Make payments...”
“Set up vendors for automatic payments…”

24Copyright 2001, Wirfs-Brock Associates, Inc.

Describe the functions that the user will want
from the system

Describe the operations that create, read,
update, and delete information

Describe how actors are notified of changes to
the internal state of the system

Describe how actors communicate information
about events that the system must know
about

Finding Use Cases

25Copyright 2001, Wirfs-Brock Associates, Inc.

Naming Use Cases
Name a use case with a verb-noun phrase that states the

actor’s goal

Use concrete, “strong” verbs instead of generalized, weaker
ones. Weak verbs may indicate uncertainty
– Strong Verbs: create, merge, calculate, migrate,

receive, archive, register, activate
– Weaker Verbs: make, report, use, copy, organize,

record, find, process, maintain, list

Be explicit. Use specific terms. They are stronger
– Strong Nouns: property, payment, transcript, account
– Weaker Nouns: data, paper, report, system, form

26Copyright 2001, Wirfs-Brock Associates, Inc.

user
make payment
transfer funds

operator
edit configuration
maintain user info

administrator
add bank agent

legacy system

Oracle
database

Different Perspectives

27Copyright 2001, Wirfs-Brock Associates, Inc.

Actor

Any one or thing that interacts with the system
causing it to respond to business events

Something that
– stimulates the system to react (primary actor), or
– responds to the system’s requests (secondary

actor)

Something we don’t have control over

28Copyright 2001, Wirfs-Brock Associates, Inc.

Primary and Secondary Actors

Primary Actor— Any one or thing that interacts
with the system causing it to respond to business
events
Something we don’t have control over

Secondary Actor— Something or someone that
responds to system requests
Something the system uses to get its job done

29Copyright 2001, Wirfs-Brock Associates, Inc.

Naming Actors
Group individuals according to their common use of the

system. Identify the roles they take on when they use
or are used by the system

Each role is a potential actor

Name each role and define its distinguishing
characteristics. Add these definitions to your glossary

Don’t equate job title with role name. Roles cut across
job titles

Use the common name for an existing system; don’t
invent a new name to match its role

Don’t waste time debating actor names

30Copyright 2001, Wirfs-Brock Associates, Inc.

Places to Look for Actors

Who uses the system?

Who gets information from this system?

Who provides information to the system?

What other systems use this system?

Who installs, starts up, or maintains the system?

31Copyright 2001, Wirfs-Brock Associates, Inc.

Finding Actors

Focus initially on human and other primary actors

Group individuals according to their common tasks and
system use

Name and define their common role

Identify systems that initiate interactions with the system

Identify other systems used to accomplish the system’s
tasks

Use common names for these other “system” actors

32Copyright 2001, Wirfs-Brock Associates, Inc.

Actor and Use Case Checklist
What system requirements are not represented by

use cases?
Document those that are internal to the system (can’t be

seen by actors) elsewhere

Do all actors and use cases have descriptive names?
Do those that need explanation have short descriptions?

Are system boundaries and scope clear?

Are areas of uncertainty documented as
assumptions and issues?

33Copyright 2001, Wirfs-Brock Associates, Inc.

Find Actors and Use CasesFind Actors and Use Cases

34Copyright 2001, Wirfs-Brock Associates, Inc.

����������	
����
��

���������
��

������

�	���
�
������
�
���
����
��

���������
���	
����
��

��
���
���

Glossaries

35Copyright 2001, Wirfs-Brock Associates, Inc.

Glossary
A glossary is a central place for:

– Definitions for key concepts
– Clarification of ambiguous terms and

concepts
– Explanations of jargon
– Definitions of business events
– Descriptions of software actions

The glossary is built incrementally

36Copyright 2001, Wirfs-Brock Associates, Inc.

Build Consensus
Agree on the problem to be solved!

Define terms in a glossary
– Identify similar behaviors that have

different names
– Identify different behaviors that have the

same name
– Choose ONE definition!

Use team development and review

37Copyright 2001, Wirfs-Brock Associates, Inc.

Defining Concepts

Identify a concept and its distinguishing
characteristics

More than a synonym for a word

Identifies a way of mentally dividing reality for
purpose of talking or thinking

38Copyright 2001, Wirfs-Brock Associates, Inc.

Writing Glossary Entries
Why this concept is important

Typical sizes or values

Clarify likely misunderstandings

Show an example

Explain graphical symbols

Relate entries

39Copyright 2001, Wirfs-Brock Associates, Inc.

A Good Form for Definitions
Name of Concept related to a Broader Concept +

Characteristics
Contrast: A compiler is a program that translates

source code into machine language

With a definition that leaves out context: A
compiler translates source code into machine
language

What performs this translation? A computer? A
person?

40Copyright 2001, Wirfs-Brock Associates, Inc.

Improving Glossary Definitions
Contrast the original:

Account In the online banking system there are accounts within the
bank which customer-users can access in order to transfer funds,
view account balances and transaction historical data, or make
payments. A customer has one or more accounts which, once
approved by the bank can be accessed. The application supports
the ability for customers to inform the system of new accounts,
and for the customer to edit information maintained about the
accounts (such as name and address information).

With a definition that says what an account is and how it is used:

Account An account is a record of money deposited at the bank
for checking, savings or other uses. A customer may have
several bank accounts. Once a customer’s account is activated for
online access, account information can be reviewed and
transactions can be performed via the internet.

41Copyright 2001, Wirfs-Brock Associates, Inc.

Another Revision
Automatic activation. Automatic activation is an optional

function of the online banking software that enables
immediate access to bank accounts. To automatically
activate an account, a customer provides information that
associates him with an account, called challenge data, such as
mother’s maiden name. Online access is granted once the
challenge data is validated against bank records. Alternatively,
the customer can supply a valid ATM bankcard number and
PIN. All accounts associated with that ATM card would be
activated.

Characteristics:
– Optional feature
– Details of how the automatic activation function

works

42Copyright 2001, Wirfs-Brock Associates, Inc.

Relating Definitions
Customer-user. A customer-user is a person who has online access to

banking accounts. One or more customer-users are associated
with a customer. Each customer-user can have different access
privileges to and visibility of a customer’s accounts. For example, in
a small business, the accounting customer-user might make vendor
payments from an account, while a business manager may simply
view an account’s transaction history.
Examples add to but don’t replace definitions

Customer. A customer is a person or organization with one or more
bank accounts. Customers do not use the online banking system,
their customer-users do.

Characteristics:
– How a customer-user relates to a customer
– What distinguishes one from another

43Copyright 2001, Wirfs-Brock Associates, Inc.

Use Pictures to Relate Concepts

wire center— the geographical area served by a central office

central office— a building where local call switching takes place

main distribution frame— a large connector at a central office,
which connects switching equipment to feeder cables

feeder cable— a large cable that connects to the main distribution
frame at a central office and feeds into distribution cables

distribution cable— a cable that connects between a feeder cable
and one or more terminals

44Copyright 2001, Wirfs-Brock Associates, Inc.

A Picture Relating
Hierarchical Concepts

central office

main
distribution
frame

wire center

feeder cables

cross connect

terminals

connector blocks

45Copyright 2001, Wirfs-Brock Associates, Inc.

Define Acronyms
and

Their Concepts
Example:

OSS— Operations Support System: As defined
by the FCC, a computer system and/or
database used at a telephone company for pre-
ordering, ordering, provisioning, maintenance
and repair, or billing

46Copyright 2001, Wirfs-Brock Associates, Inc.

Avoid Using
“Is When” or “Is Where”

Definitions using these words are often missing
the broader concept

Contrast: An overplot is an overlap between
two or more graphic entities drawn at the
same place on a page

With:An overplot is when two things overlap

47Copyright 2001, Wirfs-Brock Associates, Inc.

Explain What Is Unclear

���������	��
����
�
����	�����
Upgrading to Next Day Air does not mean you will get your
order the next day.
Once shipped, Next Day Air packages are guaranteed to arrive
at the end of the next business day. Note that upgrading method
of shipment to Next Day or 2nd Day Air does not change how
long it takes to assemble and ship an order – it only reduces the
travel time after an order leaves the warehouse. For example,
an item marked as “Usually ships within 2 to 3 days” and
upgraded to Next Day Air will usually leave our warehouse on
the 2nd or 3rd business day and reach you on the 3rd or 4th
business day.

48Copyright 2001, Wirfs-Brock Associates, Inc.

Let’s Tell a StoryLet’s Tell a Story

49Copyright 2001, Wirfs-Brock Associates, Inc.

Level— summary, core, supporting, or internal use case?

Actor(s)— role names of people or external systems
initiating this use case

Context— the current state of the system and actor

Preconditions— what must be true before a use case can
begin

Screens— references to windows or web pages
displayed in this use case

Setting the Stage

50Copyright 2001, Wirfs-Brock Associates, Inc.

Completing The Picture
Variations— different ways to accomplish use case steps

Exceptions— errors that occur during the execution of a step

Policies— specific rules that must be enforced by the use case

Issues— questions about the use case

Design notes— hints to implementers

Post-conditions— what must be true about the system after a use
case completes

Other requirements— what constraints must this use case conform
to

Priority— how important is this use case?

Frequency— how often is this performed?

51Copyright 2001, Wirfs-Brock Associates, Inc.

Use case name

Preamble

Use case body (narrative, scenario or conversation)

Supplementary details and constraints

A Use Case Template

52Copyright 2001, Wirfs-Brock Associates, Inc.

Narrative Form

Free-form text in paragraph format

Describes the intent of the user in performing the use
case

Describes high-level actions of the user during the use
case

Refers to key concepts from the problem domain that
are involved in the use case.

53Copyright 2001, Wirfs-Brock Associates, Inc.

Make Clear What You Don’t Know
Write questions about unsolved issues

Put them with the appropriate use case description to
show you’re not done
Example:

Should the credit check be performed after the
Order is submitted or before?
What happens if credit is denied?

If you are unclear about a detail, don’t write fiction; it
could become fixed

54Copyright 2001, Wirfs-Brock Associates, Inc.

Avoid Vague Words

“Depends on,” in writing, is ambiguous

Example:
XYZ depends on the following software might mean:

• The following software must be complete before
programmers at ABC can begin developing XYZ

• The following software produces data processed
by XYZ

• The following software must be installed on any
computer on which XYZ is to run

55Copyright 2001, Wirfs-Brock Associates, Inc.

Name the use case with an active verb phrase describing
the user’s goal

Write a paragraph explaining the user’s intent, what
should happen to achieve the goal, and some key
facts about the process

Identify terms that should be defined

Annotate and reference other requirements that the use
case satisfies

Tell this “story” from a single point of view (the user’s)

Writing a Use Case Narrative

56Copyright 2001, Wirfs-Brock Associates, Inc.

Write Use Case NarrativesWrite Use Case Narratives

57Copyright 2001, Wirfs-Brock Associates, Inc.

Scenarios and Conversations:
Tips and Guidelines

Scenarios and Conversations:
Tips and Guidelines

58Copyright 2001, Wirfs-Brock Associates, Inc.

Choose this option when your audience needs both
general and specific usage descriptions

High-level use case names state a general goal. Write one
narrative use case for each general goal:

Narrative: Make a payment
Describe what online payment means and typical ways of making them

Write scenarios or conversations that describe more
specific goals:

Scenario 1: Make a recurring payment
All the steps in paying my monthly phone bill …

Scenario 2: Make a non-recurring payment
All the steps in paying a fixed amount …

Scenario 3: Make a regular payment
All the steps in paying a monthly loan …

Write General and Specific Cases

59Copyright 2001, Wirfs-Brock Associates, Inc.

Write Two “Versions” of the
Same Use Case

Choose this option when some want a quick idea, while
others want to see the details

First, write a narrative

Then, choose an appropriate form. Rewrite the use case
body at this lower-level of detail

Leave the narrative as an overview

Consider adding an “overview” section to your template if
you have always have diverse readers for your use case
descriptions

60Copyright 2001, Wirfs-Brock Associates, Inc.

Writing Scenarios and
Conversations

Start by writing the success story, the “happy
path”

Capture the actor’s intentions and responsibilities,
from beginning to end goal

Define what information passes between the
system and actor but don’t describe its format
or details

61Copyright 2001, Wirfs-Brock Associates, Inc.

Writing Scenarios and
Conversations

All steps should be visible to or easily surmised
by the actor

Resist the temptation to get too detailed

Convey how the system will work

Be clear on where to start

Describe how the goal is achieved

End there

62Copyright 2001, Wirfs-Brock Associates, Inc.

Scenario
One particular path through a use case written

from the actor’s point of view

Describes a sequence of events or list of steps to
accomplish

Each step is a simple declarative statement with
no branching

May describe:
– Actors and their intentions
– System responsibilities and actions

63Copyright 2001, Wirfs-Brock Associates, Inc.

Record Issues

Clearly distinguish what you know from what
you need to find out

Assign responsibility to a stakeholder for
resolving an issue

Write and attach these to a specific description

64Copyright 2001, Wirfs-Brock Associates, Inc.

Scenario: Register Customer with Auto-Activation

1 User enters registration information:

Required information: user name, email address, desired login ID and password,
and confirmation password

One of: account number and challenge data, or ATM # and PIN

Optional: language choice and company

2 System checks that password matches confirmation password.

3 System validates required fields and verifies uniqueness of login ID

4 System verifies customer activation information.

5 System creates and activates customer online account.

6 System displays registration notification.

Online Banking Scenario

65Copyright 2001, Wirfs-Brock Associates, Inc.

Include Actor Actions
Be explicit about what the actor does. Don’t disguise them

as “system collects” or “system captures”actions

Actor actions disguised as system activities:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. Present transaction screen
2. Capture fast cash withdrawal request
3. Post transaction to bank and receive confirmation
4. Dispense money, card and transaction receipt

Fixed:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. ATM presents transaction screen
2. Customer selects “Fast Cash” option
3. ATM posts fast cash amount withdrawal transaction to bank and receives

confirmation
4. ATM dispenses money, card and transaction receipt

66Copyright 2001, Wirfs-Brock Associates, Inc.

Include System Actions
Be explicit about what the system does

No system behavior described:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. Customer selects “Fast Cash” option
2. Customer takes cash, card and receipt

Fixed:
Scenario: Withdraw Fixed Cash Amount (Fast Cash)
1. ATM presents transaction screen
2. Customer selects “Fast Cash” option
3. ATM posts fast cash amount withdrawal transaction to bank

and receives confirmation
4. ATM dispenses money, card and transaction receipt

67Copyright 2001, Wirfs-Brock Associates, Inc.

Describing Actions

Show actor intent, not precise movements
Intention: User enters name and address
Movements:

System asks for name
User enters name
System prompts for address
User enters address

Use simple grammar
Subject…verb…direct object…prepositional phrase
The system…deducts…the amount…from the account balance

Write actions that move the process forward
“Validate that…,” don’t “Check whether”

68Copyright 2001, Wirfs-Brock Associates, Inc.

Condense Information Entry
and/or Validation Actions

List of Seemingly Unrelated Items:
Enter name
Optionally, enter address
Optionally, enter telephone number

Fixed:
Enter personal information (required: name; optional:

address and phone number)

69Copyright 2001, Wirfs-Brock Associates, Inc.

Includes Too Many Low Level Details and Substeps:
System opens connection to the bank
System requests authorization of bankcard number and PIN #
Bank confirms bankcard and PIN are valid
System requests active accounts for bankcard
Bank returns account list
System creates active online account entries for each account

Fixed:
System validates bankcard and PIN #s
System activates accounts associated with bankcard

Make sure what is going on, and why is it is being done is obvious to
the typical reader. Know your audience

State System Actions At a
Reasonably High Level

70Copyright 2001, Wirfs-Brock Associates, Inc.

Optionally, select an available course section
In any order, do one or more of the following:

eat
drink
make merry

Next ….

Repeat

actions go here

Until proposed schedule is built

Showing Optional and Repeated
Actions

Indent several
optional steps

Make clear
whether a step is
optional

Merge cells to
indicate the
beginning and
end of a block of
repeated or
optional actions

71Copyright 2001, Wirfs-Brock Associates, Inc.

Use a list

Record action steps

Record actor and system actions, identifying
each

Scenario 1 Name Scenario 2 Name
1. System does this first 1. System does this first

2. Actor first does this Actor:

3. Actor next does this 2. First does this

3. And then does this

Writing a Scenario

72Copyright 2001, Wirfs-Brock Associates, Inc.

“Clinic” a Scenario“Clinic” a Scenario

73Copyright 2001, Wirfs-Brock Associates, Inc.

Conversation

action

response

74Copyright 2001, Wirfs-Brock Associates, Inc.

Conversation Form
One path through a use case that emphasizes

interactions between an actor and the system

Can show optional and repeated actions

Each action can be described by one or more
substeps

May describe:
– Actor actions
– System responsibilities and actions

75Copyright 2001, Wirfs-Brock Associates, Inc.

Make a Payment
Conversation

Actor: User System: Application
 Present list of payment templates to

user organized by payee category

Select a payment template
 Present details of selected Payment

Template and recent payment
history to payee

Enter payee notes, amount and
account

Submit payment information

 Apply payment to payee
Add new payment to recent
payment list
Redisplay the payment list

Optionally, request Setup Payments
Goto Edit Payment Template

Information
Select next function

Goto selected use case

Optional
Action

Multiple
Actions

Invoking Another Use Case

General
Flow

76Copyright 2001, Wirfs-Brock Associates, Inc.

Maintain a Consistent Level of
Detail

Do not mix intent, action and detail in the same
use case

Write at a level that seems appropriate to your
readers

This typically means describing actions, not
minute details

Description within a use case should be at the
same level of abstraction (± one)

77Copyright 2001, Wirfs-Brock Associates, Inc.

Mixed level of detail:
Check for required fields
Capture user ID and password
Ask security component for validation
Issue SQL statements to security database for logon

authorization…
Open connection to bank server
Read account summaries…

Fixed:
Check for required fields
Login user to domain
Display account summaries and bulletin

Maintain a Consistent Level of Detail

1

2

3

1

2

3

78Copyright 2001, Wirfs-Brock Associates, Inc.

Choosing Between
Conversations and Scenarios

Use a scenario when:
– a simple list of actions is sufficient
– actor-system interactions aren’t interesting

Use a conversation when:
– there are many interactions and you want to

describe them
– you want to show more detailed system responses
– you want to separate the roles of actor and system

79Copyright 2001, Wirfs-Brock Associates, Inc.

Conversation: Registration with Automatic-Activation
10. If bank supports automatic activation

with ATM and PIN then...
If ATM and PIN #s are valid then....

Fixed:

Conversation: Registration with Automatic-Activation
10. Validate ATM and PIN #

Exception – Step 10: ATM and PIN #s are invalid— Report
error to user

Don’t Embed Alternatives

80Copyright 2001, Wirfs-Brock Associates, Inc.

Leave Out Information Formats
and Validation Rules

User Name: First name, last name (24 characters max, space delimited)

email address with embedded @ sign signifying break between user
identification and domain name which includes domain and sub-
domain names delimited by periods and ending in one of: gov, com,
edu...

Fixed:
Required: user name, email address, desired login ID and password
One of: account number and challenge data, or ATM # and PIN
Optional: Company Name

Document information model details in a separate place!

81Copyright 2001, Wirfs-Brock Associates, Inc.

Don’t Mention Objects in
System Actions

Objects mentioned:
Create customer and account objects

Fixed:
Record customer account information

Remember who the readers are!

82Copyright 2001, Wirfs-Brock Associates, Inc.

Leave Out Presentation Details

Widget details described:
Display note in a read/write text field
From account in a drop-down list box
Amount in a currency field

Fixed:
Display payment template editable fields (note, from

account, amount)

Reference screens used by a conversation
Screens: See Login Page

83Copyright 2001, Wirfs-Brock Associates, Inc.

W elcom e to the
Pan-Am erican Financial

VirtualATM

Language English

Login ID XxxxxyxxxxXxxxx

Password ***************

Enter the VirtualATM

Register now to start using the VirtualATM

Run the dem o to explore Internet banking
capabilities provided by the VirtualATM

User Interfaces Show a Different
View

84Copyright 2001, Wirfs-Brock Associates, Inc.

Writing a Conversation
Use a table

Separate actor actions from system responses

Record rounds between the actor and system

Actor Actions System Responses
I do this

And I respond by ..
I tell you this…

…and this, too…

I am responding to what
you are telling me and
giving you feedback
while you are talking

Batch
round

Interactive
Round

85Copyright 2001, Wirfs-Brock Associates, Inc.

Showing More Detail

Describe what is done to accomplish the use case
– Basic functionality
– Variations
– Exceptional conditions
– Things that must be true before starting the

use case
– Things that must be true on exiting the use

case

86Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case: Register Customer
A new user must request access and gain approval in

order to perform online banking functions.
Registration can be done instantly, if the bank
supports automatic activation, or the user can enter
a request which will be approved by a bank agent.

Policies
Customer challenge data must be validated against

customer account records before activating on-line
access.

Keep Rules in a “Policies” Section

87Copyright 2001, Wirfs-Brock Associates, Inc.

Use a Table for Complex Rules
Total price: add both columnsShipping Method Shipping

Time Per Shipment Per Item
��������

��
��
��

3 to 7
business
days

$3.00 per shipment
plus $0.95 per book

������	��
�
Note: Not
available to P.O.
Boxes, the U.S.
Virgin Islands,
Guam, or
APO/FPO
addresses.

2
business
days

$6.00 per shipment
plus
add an additional
$10 for AK, HI, PR,
or American Samoa

$1.95 per book

�������	��
�
Note: Not
available to P.O.
Boxes, the U.S.
Virgin Islands,
Guam, or
APO/FPO
addresses.

1
business
day

$8.00 per shipment
plus
add an additional
$15 for AK, HI, PR,
or American Samoa

$2.95 per book

88Copyright 2001, Wirfs-Brock Associates, Inc.

Document Global Requirements
in a Central Place

Distinguish between system-wide requirements
and those than span several use cases
Example: System must run 7 by 24
Example: Account information should be

encrypted and transmitted over a secure
connection

Reference those requirements that are satisfied
by the use case below the use case body

89Copyright 2001, Wirfs-Brock Associates, Inc.

Document Hints and Ideas
Design Notes
Errors and warnings about registration information

contents should be collected and returned to the user in a
detailed message rather than stopping at the first
detectable error.

Payments should be shown in time order, with the current
date first.

The user should not see payments that he should have
visibility of. Prevent a user from seeing a payments from
secret accounts that he should be unaware of.

Add design notes as they occur to you

90Copyright 2001, Wirfs-Brock Associates, Inc.

Remove Clutter
Metatext— text that describes text that follows

The purpose of this use case is to describe how customers
make payments.

Vague Generalities— well known principles
Each input screen shall fit entirely within the window and

use as little scrolling space as possible.

Piling On— extra meaningless empty words, paragraphs,
charts, sections, overbearing templates

Before piling on After
Use Case Business Use Case
Requirements Requirements Specification Document

91Copyright 2001, Wirfs-Brock Associates, Inc.

Write a ConversationWrite a Conversation

92Copyright 2001, Wirfs-Brock Associates, Inc.

Alternatives:
Exceptions and Variations

Alternatives:
Exceptions and Variations

93Copyright 2001, Wirfs-Brock Associates, Inc.

Alternative Paths

For each significant action:

Is there another significant way to accomplish
it that could be taken at this point? (Variation)

Is there something that could go wrong?
(Exception)

94Copyright 2001, Wirfs-Brock Associates, Inc.

Choices for Describing Variations
Add textual descriptions of variations in the variations

section of the use case template, which may reference
an additional use case

or

Modify the body of the use case to show the variation,
especially when you want to emphasis the variation,
which may reference an additional use case

or

Draw an activity diagram that shows decision points,
alternate paths, and parallel activities

95Copyright 2001, Wirfs-Brock Associates, Inc.

Choices for Describing Exceptions

Add textual descriptions of exception in the
exceptions section of the use case
template, which may reference an
additional use case

or

Draw an activity diagram that shows
decision points, alternate paths, and
parallel activities

96Copyright 2001, Wirfs-Brock Associates, Inc.

Describing Exceptions Makes
Requirements More Complete

Possibilities in Place An Order
Ideal situation (primary use case):

– Good credit, items in stock � accept order

Recoverable situations:
– Low credit and preferred customer � accept order
– Low stock, and OK to reduce quantity � accept

reduced quantity order

Unrecoverable situations:
– Bad credit and not a preferred customer � decline order
– Out of stock � decline order

97Copyright 2001, Wirfs-Brock Associates, Inc.

Exceptions Added
to Place An Order

Scenario: Place An Order
1. Identify the customer
2. Identify each order item and quantity
3. System accepts and queues the order

Exceptions:
1a. Low credit and Preferred Customer:...
1b. Low credit and not Preferred Customer:...
2a. Low on stock and Customer accepts reduced

amount:..

98Copyright 2001, Wirfs-Brock Associates, Inc.

When to Create a New
Use Case to Describe An

Alternative
Write another...

– when an alternative appears complex
– when an alternative is important and you want to

emphasize it

Document simpler alternatives in the supplementary part

Document more complex ones as separate use cases

Rewrite and reorganize for clarity!

Give new use cases specific names that identify specific
conditions

99Copyright 2001, Wirfs-Brock Associates, Inc.

Alternatives in
Registration w/ Auto Activation

1. User enters registration information

2. System checks passwords match

3. System verifies login ID uniqueness
Variations :
1a. User enters ATM card # and PIN – see Validate ATM card and PIN
1b. User enters challenge data and account – see Validate Challenge Data
Exceptions:
2a. Report password mismatch and ask user to try again
2b. Third try – exit use case and report failure (unrecoverable)
3. Suggest unique alternative that user can accept or enter new choice

100Copyright 2001, Wirfs-Brock Associates, Inc.

Keep Steps at Roughly the
Same Level of Detail

Scenario: Place an Order
1. Include Identify customer
2. ...

Scenario: Identify Customer
1. Operator enters name.
2. System finds near matches.
Exceptions:
2a. No match found: ...

A step can refer to
lower-level goals; these
subordinate descriptions
are best described in a
supporting use case

101Copyright 2001, Wirfs-Brock Associates, Inc.

Describe Exceptions at a High-Level

Scenario: Place an Order
1. Include Identify customer
2. ...

Exceptions:
1a. Customer not found:. . .

Write higher-level steps as if the supporting use case
succeeds. Describe failure/recovery actions in an
exception.

assumes success

does not care why
it failed, only
describes recovery
or failure actions

102Copyright 2001, Wirfs-Brock Associates, Inc.

Documenting Exceptions
Name the exception below the use case body

Tell what step it relates to

Tag an exception when it is unrecoverable. Describe
what happens after it is detected, or

When an exception is recoverable, describe the steps the
actor or system takes to recover

Document what happens:
Choose an appropriate form
Briefly describe what happens, or
Refer to another use case describing the exception

handling

103Copyright 2001, Wirfs-Brock Associates, Inc.

Documenting Variations

Decide whether the variation should be described within
the use case body or if it should be referenced below
the use case body (consider emphasis)

Decide whether it needs a separate description

Document what happens. Either:
Briefly describe the variation, or
Refer to a new scenario or conversation that describes

the variation in detail

104Copyright 2001, Wirfs-Brock Associates, Inc.

Describing AlternativesDescribing Alternatives

105Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case ModelsUse Case Models

106Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case Model
A Use Case Model includes structured use case

descriptions that are grounded in well-defined
concepts constrained by requirements and
scope

Activate Customer

and Accounts

Edit Customer

Information

Bank Agent

Edit Customer Status

107Copyright 2001, Wirfs-Brock Associates, Inc.

Use Cases Can Be Related
UML defines these relationships between use cases:

Dependency— The behavior of one use case is affected by another
Being logged into the system is a pre-condition to performing

online transactions. Make a Payment depends on Log In
Includes— One use case incorporates the behavior of another at a

specific point
Make a Payment includes Validate Funds Availability

Extends— One use case extends the behavior of another at a
specified point
Make a Recurring Payment and Make a Fixed Payment both

extend the Make a Payment use case
Generalize— One use case inherits the behavior of another; it can

be used interchangeably with its “parent” use case
Check Password and Retinal Scan generalize Validate User

108Copyright 2001, Wirfs-Brock Associates, Inc.

A Use Case
Diagram

<<extends>>

<<includes>>

<<includes>>

<<includes>>

<<depends>>

<<includes>>
Record Payment

Add a Payee

Categorize Payee

Delete a Payee

Demo
Online Bank

Edit
Payment Template Activate Customer

and Accounts

Edit Customer
Information

Edit Payee Information

Maintain User
Information

Verify ATM
and PIN #

Register

Activate Customer
Automatically

Transfer Funds

Post Transfer of Funds

Login

Establish Preferred
Language

Get Tab-Delimited
Transaction File

View Account
Statement

Get Quicken
Transaction File

View
Account Balances

Customer

Edit
Account Information

Bank Agent

Edit Customer Status

Make Payment

109Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case Levels

Use cases can be written at differing levels of abstraction
and scope. Each serves a purpose:
Summary— General descriptions and sweeping overviews of

system functionality or business processes
Core— Task-related descriptions of users and how they interact

with the system; descriptions of a specific business process
Supporting— Descriptions of lower-level activities used to

complete subparts of a core use case
Internal— Descriptions of the behaviors of and interactions

between internal system components

110Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case Models Vary in Shape
Sailboat – balanced use cases

Classical business functions

advertise order invoice

set up
promotion

reference
promotion

monitor
promotion

place
order

create
invoice

send invoice

identify promotion identify
customer

register user identify
product

project goalSummary

Core

Supporting

Alistair Cockburn, Humans and Technology

111Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case Models Vary in Shape
Hourglass—small core

Ad hoc information query/data warehousing

engineering provisioning marketing

Generic
Queries

Maintain indexes Keep use
statistics

Tune stored
procedures

Collect
information

Support
executive
information
needs

Summary

Core

Supporting

salesHuman
resources

… …

112Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case Models Vary in Shape
Pyramid—supporting use case rich

Software application development environment

Configure
collection

Configure
reporting

Configure
cycle
options

Identify
interfaces

Establish
Mapping
rules

Present
options

Identify
usage

Specify
rules

Interface
using RMI

Map to IH
standards

Interface
using
VPI

Map to
OSS
standar
ds

Support generic
Telco Billing

Summary

Core

Supporting

Interfac
e using
CORBA

List option
by industry
standards

Collect
custome
r
reporting
options

List options
by
customer
standards

… …

… …

113Copyright 2001, Wirfs-Brock Associates, Inc.

Emphasize What’s Important
Within a Use Case

Things gain prominence by their position and
appearance. To increase an item’s emphasis:
Put it first
Highlight it

Surround it by white space
• Put it in a bulleted list
Mention it in multiple places

Give it more room
Repeat or restate it in different forms
Say it another way
Mention it in multiple places

114Copyright 2001, Wirfs-Brock Associates, Inc.

What’s Emphasized?

Template 1

Use Case: Make a Payment

Author: Rebecca

Last Revision Date: 9/11/01

Version: 0.4

Status: Preliminary Review

Level: Summary

Template 2
Use Case: Make a Payment
Actor: Bank Customer

Pre-condition: User has an
active account and is
authorized to transfer funds

115Copyright 2001, Wirfs-Brock Associates, Inc.

What’s Emphasized?

Choose course by optionally, in any sequence:
• Include Browse Course Catalog
• Include Choose Next Course from Degree Plan
• Enter course section

116Copyright 2001, Wirfs-Brock Associates, Inc.

Emphasize What’s Important
Within a Use Case Model

Place first those use cases you wish to emphasize

Choose the form of use case descriptions according to
what you want to emphasize:
– A conversation emphasize the dialog between

system and actor
– A narrative emphasizes the high points of a story,

not the details

Repeat and restate things to make them stand out

Choose a template that doesn’t inadvertently emphasizes
the wrong things

117Copyright 2001, Wirfs-Brock Associates, Inc.

A Use Case Writing Process

Revised Use Cases with
Supplementary Details

Revise and add precision

Potential new Use CasesCollect and clinic, identify
gaps and inconsistencies

Scenarios OR
conversations

Write detailed
descriptions

Candidate Core Use Case
Names

Collect and clinic,
brainstorm key use cases

NarrativesWrite summary
descriptions

Actors, Candidate
Summary Use Case
Names

Align on scope, level of
abstraction, actors, goals,
point-of-view

The ProductsSmall Teams or
Individuals

Full Team

118Copyright 2001, Wirfs-Brock Associates, Inc.

Organize Your Use Case
Descriptions

Choose an organization for your use cases

– by level (summary first, core next, supporting, then
internal ones last)

– by actor

– by type of task

– arranged in a workflow

Be consistent. Keep various forms of a single use case
together

119Copyright 2001, Wirfs-Brock Associates, Inc.

Use Case Model Review Checklist
• Check for internal consistency between use cases

• Identify “central” use cases

• Identify unmet or externally satisfied preconditions

• Review the actor’s view for completeness

• Review the handling of exceptions

• Document use case dependencies, extensions and
includes relationships

• Document external dependencies

120Copyright 2001, Wirfs-Brock Associates, Inc.

Two Worlds, Three Descriptions
Solving a Problem With a Machine

Problem Machine

Requirements
Specification

Product

Record Payment

Add a Payee

Categorize Payee

Delete a Payee

Demo
Online Bank

Edit
Payment Template Activate Customer

 and Accounts

Edit Customer
Information

Edit Payee Information

Maintain User
Information

Verify ATM
 and PIN #

Register

Activate Customer
Automatically

Transfer Funds

Post Transfer of Funds

Login

Establish Preferred
Language

Get Tab-Delimited
Transaction File

View Account
Statememt

Get Quicken
Transaction File

View
Account Balances

Customer

Edit
Account Information

Bank Agent

Edit Customer Status

Make Payment

Copyright 2002 Wirfs-Brock Associates 1

THE ART OF WRITING USE CASES TUTORIAL
NOTES

I. Description and Objectives
This is an introduction to use cases, a technique for structuring system usage descriptions, and the principles of a

user-oriented development process. You will be able to apply the principles and techniques to your projects, writing
appropriate usage descriptions.

The topics include:
III. The context for use cases
IV. Use case modeling constructs
V. System glossary
VI. A Use Case Template
VII. Narratives
VIII. Scenarios and Conversations
IX. Other Descriptions, Exceptions, and Variations
X. A Use Case Model Checklist
XI. The Writing Process
XII. More Tips and Techniques

II. Further Resources
There are several good books about use cases. We recommend these three:
Writing Effective Use Case, Alistair Cockburn, Addison-Wesley, 2001, ISBN 0-201-70225-8
Use Cases Requirements in Context, Daryl Kulak and Eamonn Guiney, Addison-Wesley, 2000, ISBN 0-201-

657678-8
Software for Use A Practical Guide to the Models and Methods of Usage-Centered Design, Larry Constantine and

Lucy Lockwood, ACM Press,1999,ISBN 0-201-92478

Andy Pol’s website, The Use Case Zone has many pointers to online articles, templates and use case discussions:
http://www.pols.co.uk/usecasezone/

III. The Context for Use Cases: Team Development
Development is never done in a vacuum; there is always a context. Many of the stakeholders in our development

efforts do not speak in our native object-oriented tongue. In our role of analyst we face two challenges: correctly
interpreting stakeholders' knowledge of the problem, their concerns and requirements in our models, and presenting
our design work in terms they can understand.

Copyright 2002 Wirfs-Brock Associates 2

A good system never dies, it is adapted and improved upon.

A system takes form through a series of textual and graphical descriptions. At each time-slice of the project, the
description should be less ambiguous, but each form should be describing the same thing. Each description, when
viewed by a practitioner with experience in the corresponding natural, graphical, or programming language, can be
evaluated according to a number of well-known criteria. Typically, the system came to be through a structured pro-
cess known as design, often preceded by a form of requirements gathering and specification called analysis. During
analysis, one of your tasks is to describe our system’s usage with use cases.

Each participant in the life of a software system has a unique set of criteria for evaluating its quality during its
development. The target values that are used during such evaluation varies according to their point-of-view. To begin
simply, let's imagine sets of criteria that are important from three points-of-view:
• user
• analyst/designer
• programmer

To bring together all of these perspectives, you need a systematic way to consider the problem. Once you can
agree on the nature and requirements of the problem, you can make informed decisions about and document which
parts of the problem you intend to automate with the computer. Finally, you will have solid ground for determining
whether or not the program that you build for our machine has, in fact, accomplished your goals.

data

usage
cost code reuse

Copyright 2002 Wirfs-Brock Associates 3

The User
The user is particularly concerned that the system be easy-to-use. Of course, this requires that the application con-

trols and processing be transparent, consistent, correct and natural to the user. The system must also do the job, i.e., it
must be complete, and it should be configurable to an individual user's specific needs.

The Analyst/Designer
From the analyst/designer’s point-of-view, the requirements, the specification and design must be simple and easy

to understand. It must be modular and traceable to the requirements. Due to an ever-evolving specification, it must be
flexible and extensible. Specified portions must be reusable. Further, the system under development is constrained by
business and user requirements. The functional characteristics of the design should be concise without losing the
details of its execution behavior.

The Programmer
Programmers have all the issues of the designer. But when entering the implementation domain, they must be cer-

tain that the application is possible. Beyond that, they must live with the constraints imposed by the hardware that
application performs on.

Building Consensus
System development has three areas of activity: understanding and documenting the problem and its requirements,

specifying how the various users will be able to use the system to satisfy the requirements and how the system will
fulfill all of the remaining non-usage requirements, and implementing the specification as software executing on
appropriate hardware.

IV. Use Case Modeling Concepts
A specification is a statement of what the system is to do in the context of your problem. It describes how the require-
ments that you have elicited by asking the right probing questions will be fulfilled. Requirements that can be satisfied
by interactions between a user and the program can be described by use cases.Use cases present a model of how your
system is used and viewed by its users. This use case model is just one view developers need to understand as they
proceed with design and implementation. It is also a view that other stakeholders in the specification of a product can
readily understand and comment on. A usage model, expressed as use cases forms the basis for a behavioral descrip-
tion of a system.

Let’s introduce the core concepts of use case models:

Use Case
A use case is a description of system functionality from a particular point-of-view. Many use cases describe task-
related activities. For example, in the Online Bank application, which we draw upon to illustrate concepts in this
course, we wrote use cases to describe these activities, among others

• making a payment
• transferring funds between accounts
• reviewing account balances

Each use case describes a discrete “chunk” of the online banking system. These use cases were described from the
users’ viewpoint.

Use cases don’t dive into implementation details, but describe how something behaves from an external perspec-
tive. A use case may include more or less detail, depending on its intended audience and what level it of the system it
describes.

Three Use Case Forms
We recommend you consider three forms of use case descriptions. Each different form has its strengths and weak-

nesses. Depending on what you need to describe, and at what level of detail, you should pick the appropriate form to

Copyright 2002 Wirfs-Brock Associates 4

write a use case description. You might choose to first write high-level overviews, then add detail and describe the
sequences of actions and interactions between the user and the program. The form you choose depends on what you
are trying to express.

You may write one or more forms for each use case, depending on the needs of your audience. Write narratives to
present a high-level overview. Then, if appropriate, write one or more scenarios or conversations that elaborate this
high-level description.

Here are examples of each of the three forms.
First, a use case narrative taken from an on-line banking project:

It offers a high-level view of how the requirements of “Make a Payment” are satisfied.
A use case narrative has a very simple format. It begins with the name of the use case, and is followed by a brief,

textual description that explains at a high level how an actor interacts with our system in order to accomplish a task or
goal. Here is another narrative:

Use Case Function and Forms

The Writing Task The Best Form To Use

Narrative

Scenario

Conversation or
Essential Use Case

Describe simple
sequence of events

Present Overview

Emphasis actor-system
interaction

Make a Payment
Narrative

The user can make online payments to vendors and companies
known to the bank. Users can apply payments to specific
vendor accounts they have. There are two typical ways to
make payments: the user can specify a one-time payment for a
specific amount, or establish regular payments to made on a
specific interval such as monthly, bi -weekly, or semi-
annually.

Register Customer
Narrative

To use the system, a customer must be registered. There are two ways to
register. If the bank supports “automatic activation”, all the customer
must do is supply identification information. After the system verifies that
the customer has an account and the information is corrector, the
customer may use the system. If the bank does not support automatic
activation, the customer submits a request to be activated, along with the
identification information. After a bank employee has check the
information and activated the customer, the customer may use the system.
This may take a few days.

Copyright 2002 Wirfs-Brock Associates 5

There are two scenarios outlined in the narrative: one for automatic activation, another with manual activation. We
write a sequence of actions to describe each. Here is an example of the scenario for registering with automatic activa-
tion.

Notice that, along with the sequence of actions, we include some notion of the types of information that are used.
Finally, the more detailed conversation form allows us to clearly show the system’s responses to the actions of the

user. Here we have many opportunities to demonstrate decision-making, iteration, and dependency among the parts
of the problem.

Each form has its strengths and weaknesses. Conversations show more detail, scenarios show step-by-step sequences,
narratives are free-form text. The form you choose depends on what you want to convey to your reader, and how
much detail you want to show.

Register Customer with
Automatic Activation

Scenario
1 User enters registration information:

Required information: user name, email address, desired login ID and password, and
confirmation password

One of: account number and challenge data, or ATM # and PIN

Optional: language choice and company

2 System checks that password matches confirmation password.

3 System validates required fields and verifies uniqueness of login ID

4 System verifies customer activation information.

5 System creates and activates customer online account.

6 System displays registration notification.

Actor: User System: Application
 Present list of payment templates to

user organized by payee category

Select a payment template
 Present details of selected Payment

Template and
Recent payment history to Payee

Enter payee notes, amount and
account

Submit Payment Information

 Apply payment to payee
Add new payment to recent
payment list
Redisplay the payment list

Optionally, request Setup Payments

 Goto Edit Payment Template
Information

Select next function
 Goto selected use case

Copyright 2002 Wirfs-Brock Associates 6

Abstraction, Scope, and Detail
Use cases can be written very concretely, or they can generalize specific actions to cover broader situations. For
example, we could write use cases that describe:

Steve registers for English 101, or
Student registers for Course, or
User uses System, or
Student registers for Variable Credit Course, or
Student Registers for Music Course

In order to choose the right level of abstraction to write a use case, you need to understand how the behaviors of
both the actor and the system might be expressed to cover the widest range of situations without losing any important
details. Clearly, “User uses System” is too high-level, and “Steve registers for English 101” is too concrete. However,
it may be important to write use case descriptions for “Student registers for Course” and, if the system’s or user’s
actions are sufficiently different, to also describe “Student registers for Variable Credit Course.” In fact, if registering
for a music course means signing up for practice sessions in practice rooms in addition to classroom instructions, it
too may need additional description. You can also express variations within a single use case description.

Use cases vary in scope and detail. You can use them to describe all or part of our “system”. Which system bound-
ary do we mean: At a particular component (describing the web applet)? across the application (on-line banking)? or
across multiple applications within the organization (the bank)?

We typically start by describing application level scope. The amount of detail that we choose to put into use cases
varies. We could describe general actions: Enter deposit amount. Or specific detail: Press number keys followed by
enter key

Write at the level that seems appropriate to your readers. This typically means describing actor actions and system
responses that match the goal for the use case. So, to follow that guideline, if the use case were named “Make
Deposit,” we’d describe the user general action of “enter deposit amount,” not his or her gestures: “Press number
keys followed by enter key.”

Form Strengths Weaknesses
Narrative • Good for high-

level summaries
• Can be written to

be implementation
independent

• Easy to write at too high
or too low a level

• Not suitable for complex
descriptions

• Can be ambiguous about
who does what

Scenario • Good for
step-by-step
sequences

• Hard to show parallelism
or arbitrary ordering

• Can be monotonous
Conversation • Good for seeing

actor-system
interactions

• Can show parallel
and optional
actions

• Easy to write at too
detailed level: pseudo
pseudo-code

• Only two columns: What
about multiple actors?

All Forms • Informal • Informal

Copyright 2002 Wirfs-Brock Associates 7

Recipe: Finding the Use Cases
1. Describe the functions that the users will want from the system.
2. Describe the operations that create, read, update, or delete information that the system

requires. Describe these operations.
3. Describe how actors are notified of changes to the internal state of the system.

Identify actors that inform the system about events that the system must know about. Describe
how the users will communicate the information about these events.

Actors
An actor is some one or some thing that interacts with our system. We divide actors in to two groups:

• those that stimulate the system to react (primary actors), and
• those that respond to the system’s requests (secondary actor)

We model actors so we can understand what behaviors they’ll need from our system, if they are primary actors.
We model secondary actors so we understand how our system uses external resources. In the Unified Modeling Lan-
guage, the stick figure icon is how we show an actor on a use case diagram. This is the standard notation for an actor,
although you may choose another icon that is more meaningful.

Actors are the external agents that use (or are used by) our system. Those that initiate activity are worth considering
as a group. These primary actors stimulate the system to take action and form the basis of most of our usage descrip-
tions. The other, secondary actors, interact with the system only because the system poses questions to them or issues
a command. They are usually external programs or devices, although sometimes the system will direct a human to
perform a task.

Most often, systems engage with an actor called the user. In fact, we often unconsciously equate an actor with this
user. But such a narrow vision will often make us overlook significant areas of the system’s requirements. For exam-
ple, many systems require support for administrators and technicians that periodically maintain and configure the sys-
tem. These activities are quite different from the user's tasks. Systematic consideration of the various actors that are
involved with our system will ensure a more complete understanding of what it must do.

Guidelines for Finding and Naming Actors

GUIDELINE: Focus on primary actors.

In the on-line banking system, we have a number of human actors. The one we initially focused on was the cus-
tomer-user who accesses financial services including bill payment, account balance and statement inquiries, and
funds transfer. An agent of the bank (or bank agent) can perform several tasks: customer maintenance, console
operation, and bank administrative functions which include bank agent maintenance, and system configuration.

GUIDELINE: Group individuals according to their common use of the system. Identify the roles they take on
when they use or are used by the system

Each role is a potential actor

Name each role and define its distinguishing characteristics. Add these definitions to your glossary

Copyright 2002 Wirfs-Brock Associates 8

GUIDELINE: Focus initially on human actors. Ask:

• Who uses the system?
• Who installs the system?
• Who starts up the system?
• Who maintains the system?
• Who shuts down the system?
• Who gets information from the system?
• Who provides information to the system?

GUIDELINE: Name human actors by their role.

Specific people may play several roles; several actors may represent them. We could divide our bank agent actor
into several, more distinct roles: console operator, bank agent administrator, customer administrator, and system
configuration manager. These finer distinctions, while easily made, didn't really help us gain any new insights
about system requirements for bank employee usage. While important, bank agent usage wasn't a high priority.
The customer-user facilities were of primary interest to the project manager and sponsors. So we backed off and
did not enumerate these kinds of bank agent actors.

GUIDELINE: Don't equate a job title with an actor name.

This wasn't a problem on the online banking application. Since we didn't directly interact with bank employees
we didn't know their job titles. We were arm's length from end users, so it was easy for us to create a single bank
agent category. However, we have seen several projects where jobs and titles get in the way of understanding of
how users need to use the system. Supervisory job titles don't always equate with more features; usage often cuts
across job function.

GUIDELINE: Don't waste time debating actor names.

Actor names should be nouns or noun phrases. Don't be too low level when naming actors. Don't be too abstract
in describing or naming an actor. We didn't have the benefit (or bias) of knowing the name of any existing legacy
applications at banks. The physical name of the transaction service, e.g. CICS, seemed too physical and not very
descriptive; our next line of thought was that this actor represented our connection to existing legacy applica-
tions. So, we settled on calling this external actor a legacy connection and left it at that!

GUIDELINE: Be consistent in showing actors. Your choices are:

• Show all actors that interact with the system, even remote systems,
• Show only those initiators of the contact,
• Show only those actors that need the use case,
• Show only human actors, not the system

We recommend you use the first strategy, and distinguish actors that initiate contact as primary actors, and
actors that the system touches as secondary actors.

GUIDELINE: An actor name for an existing system should refer to its common name.

GUIDELINE: Names of non-human actors are more recognizable if they simply remain the name of the system.

Don't invent clever, more abstract names if it causes confusion. In the online banking application it was fairly
easy to find our non-human actors. We recorded information about On-line Banking System customers and their
transactions in an Oracle Database, and accessed legacy systems (either CICS, IMS/DC) to perform financial
transactions and pull current account information. This led us to two external actors: legacy connection and data-
base. These actors mainly were of interest to the development team who needed to model objects that represented
interfaces to these external actors; the project sponsor only cared about the kind of legacy connections that would
be supported, and that Oracle was the database we had selected.

Copyright 2002 Wirfs-Brock Associates 9

GUIDELINE: If you are building a system whose behaviors are based on privileges and rights of individuals
rather than on their roles, record these variations in a manner that lets you track their impact on the design - don't
try to solve it with actors alone.

Sometimes we need to know more about individual users than their actor roles. You may need to describe indi-
viduals' rights and capabilities, and note what privileges are required to exercise certain system functionality.
Simply defining actors doesn't buy us enough information. This issue came up in our system design when we
started considering version two On-line Banking System features. In release one, a customer-user could register
and use all banking functions; in version two, a major requirement was that multiple users could be associated
with a single customer. Each user might use a different set of the customer's accounts. A user could grant account
visibility if he/she had appropriate privileges (the ability to do account and user maintenance). Initially, we
debated splitting customer-user into primary- user and customer-user, but talked ourselves out of creating a new
actor to solve our conceptual problem. It wasn't clear that 'primary user' was the right distinction. One clue was
that our domain expert didn't like this idea at all. He felt that since all customer-users had the potential to do
account and user maintenance, they shouldn't be arbitrarily divided into different actors. We also realized that
our second attempt at factoring bank agent into roles hid the requirement that our system needed to let banks con-
figure the capabilities of individual bank agents. Those that were trained in customer administration weren't
likely to also perform console operator functions, but it was up to the bank to decide who could do what; it was
up to our system to enforce and grant these capabilities.

These activities are quite different from the user's tasks. Systematic consideration of the various actors that are
involved with our software will ensure a more complete understanding of what the software must do.

Recipe: Finding Actors
1. Focus initially on human and other primary actors.
2. Group individuals according to their common tasks and use of the system.
3. Name and define their common role.
4. Identify systems that initiate interaction with the system.
5. Identify other systems used to accomplish the system’s tasks (these are secondary actors).
6. Use common names for these other “system” actors.

Use Case Models
A single use case describes a discrete chunk of the system’s functionality. A use case model is a collection of

related descriptions of our system’s behavior. These descriptions are backed up by clearly understood concepts, and
should satisfy system requirements.Use case descriptions are typically written from an external perspective; that of a
user performing task-related activities. These descriptions form the basis of our view of how the various actors in our
problem will interact with the program and flesh out one of our perspectives of the specification.

While you initially focus on use cases initiated by human actors, there are a number of other system initiated use
cases that can be documented, such as:

• initializing the system on startup
• broadcasting change information to other active components
• backing up the database

Activate Customer

and Accounts

Edit Customer

Information

Bank Agent

Edit Customer Status

Activate Customer

and Accounts

Edit Customer

Information

Bank Agent

Edit Customer Status

Copyright 2002 Wirfs-Brock Associates 10

Use Cases Can Be Related
Use case diagrams can show a big picture of the application by demonstrating what actors participate in what use
cases, and by showing the relationships among the various use cases. Relations like “uses”, “depends”, and “extends”
are added when this additional level of detail provides useful information.

GUIDELINE: Don’t show everything!

GUIDELINE: You can have more than one system view. Don’t try to put all of your useful information into one
diagram.

The Unified Modeling Language defines these relationships between use cases:
Dependency— The behavior of one use case is affected by another
Being logged into the system is a pre-condition to performing online transactions. Make a
Payment depends on Log In
Includes— One use case incorporates the behavior of another at a specific point
Make a Payment includes Validate Funds Availability
Extends— One use case extends the behavior of another at a specified point
Make a Recurring Payment and Make a Fixed Payment both extend the Make a Payment
use case
Generalize— One use case inherits the behavior of another; it can be used interchangeably with its “parent”
use case
Check Password and Retinal Scan generalize Validate User

Use Case Diagrams
A use case diagram shows a high-level picture of the users and the use cases they participate in. In a complex sys-

tem, several use case diagrams can be drawn to show different views of how the system is used. The Unified Model-
ing Language includes a graphical notation for representing use cases as ellipses and actors as stick figures. The lines
drawn between actors and use cases indicate that the actor is initiating the use case. Use cases can call upon other use
cases, indicated by the <<includes>> relationship, or vary the behavior of a use case, indicated by the <<extends>>
relationship. The dependency relationship is shown by a dashed line. Generalization (not shown in the diagram

Copyright 2002 Wirfs-Brock Associates 11

below) is shown by an open arrow pointing to the use case being generalized. This is the same as the inheritance rela-
tionship between classes.

Guidelines for Drawing Use Case Diagrams

GUIDELINE: Identify the “shape” of your use case model, then draw one or more use case diagrams that present
meaningful snapshots of your system’s behavior.

GUIDELINE: Don’t include every use case in a single Use Case Diagram.

You can draw more than one use case diagram. A use case can be shown on more than one diagram, too. The
purpose of a use case diagram is to convey a particular organization of use cases.

Some possible diagrams: A diagram showing core use cases and their initiating actors; a diagram that emphasizes the
interactions and dependencies between two actors; a high-level diagram that identifies summary use cases; a detailed
diagram that shows how certain core use cases are fulfilled by “including” supporting use cases; a diagram that iden-
tifies key variations with use cases that “extend” other use cases

Use Case Levels
Use cases can be written at various levels of abstraction. They can describe sweeping overviews of system function-
ality. These are termed “summary” use cases. Use cases can describe task related activities of users as they interact
with the system. These are “core” or task level use cases. You can describe how your software behaves in support of
core use cases. We term these “supporting” use cases. You can dig even deeper and describe how components in our

<<extends>>

<<includes>>

<<includes>>

<<includes>>

<<depends>>

<<includes>>
Record Payment

Add a Payee

Categorize Payee

Delete a Payee

Demo
Online Bank

Edit
Payment Template Activate Customer

and Accounts

Edit Customer
Information

Edit Payee Information

Maintain User
Information

Verify ATM
and PIN #

Register

Activate Customer
Automatically

Transfer Funds

Post Transfer of Funds

Login

Establish Preferred
Language

Get Tab-Delimited
Transaction File

View Account
Statement

Get Quicken
Transaction File

View
Account Balances

Customer

Edit
Account Information

Bank Agent

Edit Customer Status

Make Payment

<<extends>>

<<includes>>

<<includes>>

<<includes>>

<<depends>>

<<includes>>
Record Payment

Add a Payee

Categorize Payee

Delete a Payee

Demo
Online Bank

Edit
Payment Template Activate Customer

and Accounts

Edit Customer
Information

Edit Payee Information

Maintain User
Information

Verify ATM
and PIN #

Register

Activate Customer
Automatically

Transfer Funds

Post Transfer of Funds

Login

Establish Preferred
Language

Get Tab-Delimited
Transaction File

View Account
Statement

Get Quicken
Transaction File

View
Account Balances

Customer

Edit
Account Information

Bank Agent

Edit Customer Status

Make Payment

A Use Case
Diagram

Copyright 2002 Wirfs-Brock Associates 12

software behave and interact. These “internal “use cases are of value to those designing how the responsibilities of
the system are distributed between components.

The most useful level to consider from the external actor’s understanding is the core level.This will be the focus of
our writing in class. However, sometimes other stakeholders need to see the big picture and will need to read sum-
mary use case description. Developers need the extra precision found in supporting and internal use cases. Core level
use cases are linked to lower level supporting use cases, and are part of higher level strategies.

Use Case Model Shapes
Depending on the nature of the system you are trying to describe, your use case model may assume one of several

shapes. Alistair Cockburn, in Writing Effective Use Cases, identifies the sailboat shape. It is a use case model that
includes a well structured set of core use cases that are defined to meet strategic behaviors outlined in a few summary
level use cases. In this sailboat image, most of the use cases are core- those found at the waterline where the sailboat
sits in the water. At the core level, you identify specific tasks of various actors using the system. Below this waterline
are supporting use cases that are used to fulfill one or more core use case functions.

FIGURE 1. A sailboat shaped Use Case Model. A balanced number of core or task-level use cases.

A second characteristic use case model shape is the “hourglass”. This use case model is characterized by a small
(could even be one) number of core or task-level use cases that call on a wide-range of supporting use cases. The core
use cases could support several strategic goals. In this use case model shape, variations and complexities are typically
hidden to the software user performing a core use case.

FIGURE 2. An hourglass shaped Use Case Model. Much of the complexity of the software is not evident to
the user.

advertise order invoice

set up
promotion

reference
promotion

monitor
promotion

place order create invoice send invoice

identify promotion identify customerregister user identify
product

project goalSummary

Core

Supporting

advertise order invoice

set up
promotion

reference
promotion

monitor
promotion

place order create invoice send invoice

identify promotion identify customerregister user identify
product

project goalSummary

Core

Supporting

engineering provisioning marketing

Generic
Queries

Maintain indexes Keep use statisticsTune stored
procedures

Collect
information

Support executive
information needs

Summary

Core

Supporting

salesHuman
resources

… …

engineering provisioning marketing

Generic
Queries

Maintain indexes Keep use statisticsTune stored
procedures

Collect
information

Support executive
information needs

Summary

Core

Supporting

salesHuman
resources

… …

Copyright 2002 Wirfs-Brock Associates 13

A third shape is a “pyramid”. In this Use Case model, there are many supporting use cases, each defining function-
ality that can be called on by a few core use cases. This is typical of a software application development environment
or an operating system. Sometimes, there may be little or no distinction between core and supporting use cases: all
may be exposed and usable by the same actors.

FIGURE 3. A pyramid-shaped Use Case Model. Core use cases resting on numerous supporting use cases.

Example: Defining Usage Requirements
The On-line Banking System requirements consists of support for all of the tasks that the users need to perform

with the system. They initiate the activities of the system and their agendas are reflected in the use cases:
• Login
• Register Customer
• View Account Balances
• View Account Statement
• Transfer Funds
• View Session Activities
• Select Setup Choice
• Edit User Information
• Edit Account Information
• Delete Account
• Edit Payment Template Information
• Make Payment

When you define what your system does for its users, you are also determining the boundaries of our system:
what’s inside?, what’s out of scope?, what does your system do for its users?, how do they interact with it?, and how
does it interact with other systems?

In the on-line bank, although the end users using the web were of primary concern, there were other people and
systems that interacted with the software. These actors also initiated and participated in a number of use cases. Exter-
nal systems, and how they were used were important, too.The interactions and usage of legacy software were impor-
tant to specify so that it could be isolated and viewed in a uniform way by other parts of the system. The use of the
database was of concern to developers and the sponsors. Although the database was a secondary actor; the details of
what was stored in the database, and the requirements for storing transaction details (not internal transactions) made it
important to describe it in a manner that was understood by both parties.

Configure
collection

Configure
reporting

Configure
cycle options

Identify
interfaces

Establish
Mapping
rules

Present
options

Identify
usage

Specify rules

Interface
using RMI

Map to IH
standards

Interface
using VPI

Map to
OSS
standards

Support generic
Telco BillingSummary

Core

Supporting

Interface
using
CORBA

List option
by industry
standards

Collect
customer
reporting
options

List options
by customer
standards

… …

… …

Configure
collection

Configure
reporting

Configure
cycle options

Identify
interfaces

Establish
Mapping
rules

Present
options

Identify
usage

Specify rules

Interface
using RMI

Map to IH
standards

Interface
using VPI

Map to
OSS
standards

Support generic
Telco BillingSummary

Core

Supporting

Interface
using
CORBA

List option
by industry
standards

Collect
customer
reporting
options

List options
by customer
standards

… …

… …

Copyright 2002 Wirfs-Brock Associates 14

Use cases are only part of any system specification. Use cases are often accompanied by supporting information,
pictures, more formal descriptions of algorithms, etc., that are meaningful to people who will build or use the system.

The sources of funding of the on-line bank were a consortium of South American banks, and a major computer
manufacturer. They specified schedule, cost, deliverables, variability from one bank to another, support for legacy
connectivity, user languages, development tools and languages, hardware platforms, and distribution requirements.

The user requirements came from representatives of the banks: the tasks to be performed on-line, the user inter-
face, and the roles of the people that will use the application.The technical architect imposed a set of non-functional
requirements on the system: reusability, performance characteristics, robustness, configurability, support for technol-
ogy standards, error-handling, and fault tolerance. The patterns of usage were not nearly as difficult as the “internal”,
structural and behavioral requirements imposed by the system architect and the sources of funding.

It is for this reason that use cases are only part of any system specification. They are accompanied by supporting
information, pictures, more formal descriptions of algorithms, hardware componentry, etc., that are meaningful to
people who will build or use the system.

V. Glossaries
The purpose of a glossary is to clarify terms so that team members can know what they are agreeing or disagreeing
on. A common set of terms that are defined and understood forms the basis for all our descriptions. A glossary should
be developed to accompany a use case model as well as other requirements documentation.

A glossary is a central place for:
• Definitions for key concepts
• Clarification of ambiguous terms and concepts
• Explanations of jargon
• Definitions of business events
• Descriptions of software actions

The glossary is built incrementally. Terms in the glossary form a working description of the concepts and events
that exist in the various domains of the problem, and clarify the terms that we use to describe requirements and write
use cases. A good glossary entry follows this form:

“Name of a concept” related to a “broader concept” + any distinguishing characteristics
For example:
A compiler is a program that translates source code into machine language.

user
make payment
transfer funds

operator
edit configuration
maintain user info

administrator
add bank agent

legacy system

Oracle
database

Drawing the System Boundary
Actors and Use Cases

Copyright 2002 Wirfs-Brock Associates 15

Here is an example from the on-line bank contrasting an original version with an improved version, reworked for
clarity:

Experience has shown the value of developing a common set of terms for the development team. Seasoned develop-
ers, because of their wide experience in the domain, will have encountered multiple, varying definitions for many of
the core concepts. A concept glossary levels the playing field and unifies these diverse points-of-view. For team
members new to the domain, a concept glossary offers a jumpstart to understanding the domain, and is vital to under-
standing the requirements.

GUIDELINE: Write definitions for key concepts.

GUIDELINE: Build incrementally when writing requirements.

GUIDELINE: Add supplementary information.

Why is this concept important? What are typical sizes or values? Clarify likely misunderstandings. Explain
graphical symbols

GUIDELINE: Determine an appropriate name for each concept.

GUIDELINE: Normalize names.

Identify behaviors that are the same but have different names. Identify behaviors that are different but have the
same name.

GUIDELINE: Define acronyms and their concepts.

Example: OSS - Operations Support System: As defined by the FCC, a computer system and/or database used at
a telephone company for pre-ordering, ordering, provisioning, maintenance and repair, or billing

GUIDELINE: Use pictures to relate concepts.

Example: We recommend defining terms and relating them with a picture as the best way to get across complex
relationships. Here are some related concepts:

wire center- the geographical area served by a central office

central office- a building where local call switching takes place

main distribution frame- a large connector at a central office, which connects switching equipment to feeder
cables

Improving Glossary Definitions

Contrast the original:
Account In the online banking system there are accounts within the bank

which customer-users can access in order to transfer funds, view account
balances and transaction historical data, or make payments. A customer has
one or more accounts which, once approved by the bank can be accessed.
The application supports the ability for customers to inform the system of
new accounts, and for the customer to edit information maintained about the
accounts (such as name and address information).

With a definition that says what an account is and briefly
describes how it is used:
Account An account is a record of money deposited at the bank for

checking, savings or other uses. A customer may have several bank
accounts. Once a customer’s account is activated for online access, account
information can be reviewed and transactions can be performed via the
internet.

Copyright 2002 Wirfs-Brock Associates 16

feeder cable- a large cable that connects to the main distribution frame at a central office and feeds into distribu-
tion cables

distribution cable- a cable that connects between a feeder cable and one or more terminals

and a picture showing how they are related:

GUIDELINE: Avoid vague words.

GUIDELINE: Avoid Using is when or is where.

Good: An overplot is an overlap between two or more graphic entities drawn at the same place on a page

Bad: An overplot is when two things overlap

GUIDELINE: Define a particular status as a list of possible states.

Example: A proposal’s approval status is its current stage in the process for granting or denying it: awaiting
department approval, awaiting chair approval, awaiting board approval, or denied.

GUIDELINE: Use team development and review to build consensus for definitions.

A Picture Relating
Hierarchical Concepts

central office

main
distribution
frame

wire center

feeder cables

cross connect

terminals

connector blocks

Copyright 2002 Wirfs-Brock Associates 17

VI. A Template For Writing Use Case Descriptions
Here is a template for filling in additional information that can accompany the description of the interaction

between the actor and the system. Several authors have proposed their versions of a Use Case Template. They are
similar but have slight differences. This discussion presents an overview of elements that can be part of a use case
template.

FIGURE 4. The parts of a Use Case Template

We recommend you start by adopting a template that is fairly lightweight (we include more information in this
template than you may need to get started). Depending on where you are in a project, you may start by only filling in
part of the information in a template...and then add more details in a second iteration. For example, you may start by
only writing a narrative and identifying the actor for the use case. Later, you may describe exceptions and add conver-
sations or scenarios that expand on the basic narrative.

It is useful to divide the template into three parts:
• the preamble- which defines the context of the use case
• the body - which describes the actor’s interactions with the system, and
• supplementary information - which adds details and constraints on the use case’ execution

The Preamble
The preamble contains information that “sets the stage” for the behavior described in the body of the use case
In the preamble, you may find the following information:

• Level - summary, core, supporting or internal use case?
• Actor(s) - role names of people or external systems initiating this use case
• Context - the current state of the system and actor
• Preconditions - what must be true before a use case can begin
• Screens - references to windows or web pages displayed in this use case (if a UI is part of the system)

The Body
Description of the use case’s behavior. This description can be:

• A narrative - a free form paragraph or two of text.
• A scenario - a step-by-step description of one specific path through a use case
• A conversation - a two-column (or more columns if showing dialogs between multiple actors and/or system
components) description of the dialog between the actor and the system.

In a single use case, you may write a narrative, and, once you’ve worked out how the actor will interact with the
system, then write either a scenario or conversation. Nothing says that the body has to be restricted to one form. But
most of the time we see writers start by writing a very brief narrative (of just a couple of sentences), then write either
a scenario or a conversation that goes into more depth. They leave both forms around— the narrative as an overview
(which only certain stakeholders read) and the other as an in depth presentation of actor/system interaction.

A Use Case Template

Use case name

Preamble

Use case body (narrative, scenario or conversation)

Supplementary details and constraints

Copyright 2002 Wirfs-Brock Associates 18

Supplementary Details
• Variations - different ways to accomplish use case steps
• Exceptions - errors that occur during the execution of a step
• Policies - specific rules that must be enforced by the use case
• Issues - questions about the use case
• Design notes - hints to implementers
• Post-conditions - what must be true about the system after a use case completes
• Other requirements- what constraints must this use case conform to
• Priority- how important is this use case?
• Frequency - how often is this performed?

GUIDELINE: When you start writing use cases, describe the key points. Typically, this means giving the use
case a name, identifying the actor and writing the use case body (one of the three forms).

GUIDELINE: Fill in template fields as information becomes available.

As you write a narrative, you may think of an issue or a note to the designer. Jot these down when you think of
them. Don’t wait for the perfect time. The right time to add a detail is when it occurs to you. You can always note
a fact, then fill in more complete details later.

GUIDELINE: Make clear how complete a use case is.

Daryl Kulak and Eamonn Gray in their book, Use Cases Requirements in Context identify four phases of a use
case description: facade, filled, focused and finished.

Whether you pick these four “degrees” of completeness or some other measure of completeness, it is a good idea
to note whether a use case is a first draft, whether it has been reviewed, when it has been revised or approved by
various stakeholders, and “signed off” as finished.

GUIDELINE: For more formal projects, information about the current state and history of a use case can be
added to the template..

Add this information as supplementary details. This lets readers of the use case see the main points first. If you
include this information are part of the preamble, it adds clutter that has to be scanned over before the reader
finds the main facts about the use case.

A use case description can start out simply, then get quite complex as template details are filled in. Start simply, writ-
ing down what you know and issues that need to be addressed. Through several revisions and refinements get to a
“finished” use case.

VII. The Narrative Form
Narratives are free-form text in paragraph format. A narrative describes the intent of the user in performing the use
case, high-level actions of the user during the use case, and refers to key concepts from the problem domain that are
involved in the use case.

Below is an example narrative from the On-line Banking System Specification Documents. We have briefly
described the purpose of Log In and what happens as a result of the user successfully completing the Log In. We've
also included a set policies that relate to logging in, and have listed some exceptions that may arise during Log In.

Use Case: Log In
Log In is the primary entry point into the On-line Banking System. Log In verifies that the
user is previously registered with the On-line Banking System, and that s/he has correctly
entered user id and password information. After a successful login, a registered user can use
the system's main functions. All others, regardless of whether they have registered or not,
have access to the On-line Banking System Demo and Registration Page.

Copyright 2002 Wirfs-Brock Associates 19

Recipe: Writing Use Case Narratives
1. Give the use case a descriptive name.

GUIDELINE: Begin the use case name with an active verb.

2. Identify the actor that uses the use case.
3. Identify the intended audience of the use case.
4. Specify the actor’s goals for the use case.

GUIDELINE: Use active verbs to describe the actor’s goal.

5. Write a description consistent with the name and the user’s goal; one that elaborates the use
case.

GUIDELINE: Maintain a single point-of-view: the actor’s.

GUIDELINE: Describe intent, not action.

GUIDELINE: Capture the simple, normal use cases first. You will describe the variations as secondary use cases
later.

GUIDELINE: If the use case changes the state of some information, describe the possible states.

GUIDELINE: Write the use case description at a level appropriate for the intended audience.

GUIDELINE: Leave out details of user interface, performance, and application architecture. Put these details in a
central document, and reference these requirements in the use case.

6. Describe any business rules or policies that affect the use case in a separate place: either in a
policies section below the use case body; or in a global policies section. Reference globally
applicable rules or policies in the use case policy section of the template.

VIII. Scenarios and Conversations: Writing More Detailed Usage Descriptions
One key to developing a usage model is knowing how much to describe. A closely related question is, “What’s the
best way to present detailed information?” Use case narratives are general descriptions about how a system supports
an actor’s goal. There may be numerous ways to achieve any goal. Sometimes it helps to clarify things by concretely
describing actions and information for a specific situation.

Scenarios and conversations are forms that are useful to show in more detail how an actor achieve’s a specific
goal.

How many use cases should be written? A glib answer: “As many as it takes to get the main ideas across.” The
number is highly dependent on how close your intended audience is to the problem, and how many details they need
spelled out.

Here’s one general word of advice: Write to be read. If it clarifies and brings understanding to your system’s
behavior, write narratives to describe the general situation, then augment those narratives with specific descriptions.
If your readership only looks at details, narratives likely won’t be of value.

GUIDELINE: High-level use case names state a general goal. Write one narrative use case for each general goal,
and as many scenarios or conversations as it takes to get the main ideas across.

For example:

Narrative: Make a payment

Describe what online payment means and typical ways of making them

Copyright 2002 Wirfs-Brock Associates 20

Write scenarios or conversations that describe more specific goals:

Scenario 1: Make a recurring payment

All the steps in paying my monthly phone bill …

Scenario 2: Make a non-recurring payment

All the steps in paying a fixed amount …

Scenario 3: Make a regular payment

All the steps in paying a monthly loan …
Sometimes, your use cases are read by diverse audiences. Some want to only see details. Others only want “big

picture” overviews. In the interests of keeping everything together, and not creating a maintenance problem, we sug-
gest you bundle both a general and a specific description together in a single use case.

GUIDELINE: Write two “versions” of the same use case: one version a narrative, the other version a more
detailed form.

Example:

First, write a narrative

The “View Recent Account Activity” narrative describes generally how users view the current or previous
account period’s transactions

Then, choose an appropriate form. Rewrite the use case body at this lower-level of detail

The View Recent Account Activity conversation includes the details of optional actions, such as downloading a
file containing recent transactions in several different formats

Leave the narrative as an overview. Consider adding an “overview” section to your template if you have always
have diverse readers for your use cases.

What is a Scenario?
Scenarios are one means to describe a specific path through a use case. A scenario list specific steps toward that

goal. It describes a sequence of events or list of steps to accomplish.Each step is a simple declarative statement with
no branching. A scenario may describe:

• Actors and their intentions
• System responsibilities and actions

All steps should be visible to or easily surmised by the actor. We typical state a statement by naming who is per-
forming the step. Our goal is to convey how the system and actor will work together to achieve a goal. Even though a
scenario can show more detail, resist putting in too much detail. Much of that detail can be placed in the preamble or
supplementary parts of the use case template.It should be clear where a scenario starts. Describe the steps in achiev-
ing the actor’s goal. End there.

For example, we might write a scenario toward the user’s goal of “Register a Customer.” This specific scenario
explains a variation of this task called “Register Customer with Auto-Activation.”

Example Scenario: Register Customer with Auto-Activation
1. User enters registration information:

• Required information: user name, email address, desired login ID and password, and confirmation password
• One of: account number and challenge data, or ATM # and PIN
• Optional: language choice and company

2. System checks that password matches confirmation password.
3. System validates required fields and verifies uniqueness of login ID
4. System verifies customer activation information.
5. System creates and activates customer on-line account.
6. System displays registration notification.

Copyright 2002 Wirfs-Brock Associates 21

Recipe: Writing Scenarios
The purpose of a scenario is to describe the flow of events in the use case. These events can be initiated by the user

or performed by the system, but should express the steps of the process as the user understands it.
1. For each use case, determine the “happy path” to the actor’s goal.

GUIDELINE: Ignore other possible paths through the use case at first. Write these “secondary” scenarios later.

GUIDELINE: Refer to the specific use case that the scenario elaborates, if the use case has been written.

2. Write a scenario as a sequence of steps, ordered by time.

GUIDELINE: Every step in a scenario should be visible to or easily surmised by the user.

GUIDELINE: Write each step as a simple, explanatory statement.

GUIDELINE: Keep information and actions concrete.

GUIDELINE: Focus on ordering and definition of steps.

GUIDELINE: Factor lower-level details into new descriptions.

GUIDELINE: Keep steps ar roughly the same level of abstraction.

In following example, several steps have been compressed to keep actions at the same level.

3. Number the steps.

GUIDELINE: Don’t get carried away. Keep the numbering one level deep. Remember, the goal is clarity.

4. Look for steps that might repeat within the scenario.

GUIDELINE: To show repetition, use repeat or while statements.

GUIDELINE: Avoid the tendency to write pseudocode unless your audience are programmers who only
understand code.

5. Look for steps that depend on a condition.

Mixed level of detail:
Check for required fields
Capture user ID and password
Ask security component for validation
Issue SQL statements to security database for logon

authorization…
Open connection to bank server
Read account summaries…

Fixed:
Check for required fields
Login user to domain
Display account summaries and bulletin

1

2

3

1

2

3

Copyright 2002 Wirfs-Brock Associates 22

GUIDELINE: To show that a step depends on a condition, use an if statement.

GUIDELINE: When the logic for expressing a conditional statement becomes too complex, write another,
alternative scenario.

GUIDELINE: Distinguish between variations and exceptions. Describe recovery from exceptions in a
supplementary note or another scenario if the recovery is complex. Document variations in either a
supplementary note, or another scenario if the actions are interesting.

6. Look for sequences of steps that repeat across scenarios.

GUIDELINE: Don’t do this early in your project. Later, factor out portions of a scenario that repeat in other
supporting scenarios, give them a name, and refer to them within the core use case with a reference to the
supporting use case’ name.

7. Look for optional steps.

GUIDELINE: Preface optional steps or actions with “Optionally,..”. Indent optional steps for clarity.

8. Show the range of values of data that is used in the scenario.

GUIDELINE: If the user changes the information, specify the possible states that the information might go
through.

What is a Conversation?
A conversation describes a significant sequence of interactions between an actor and the system, or between one

part of our system and another. It is a detailed description of a Use Case that clearly defines the responsibilities of
each participant.

There are two central parts to a conversation, a description of requests or inputs, and a corresponding description
of the high level actions taken in response. Together, these “side-by-side” descriptions capture a sequential ordering
of communications.

Like a scenario, it can show optional and repeated actions. Each action can be described by one or more substeps
The focus of a conversation is to detail the types of interactions, the flows of information, and the first-level sys-

tem logic of the system, all from the user's point-of-view. If desired, it can also be used to drill down to the deeper
levels of system logic, as seen by a developer.

FIGURE 5. A conversation shows a dialog

Because of the various ways in which a user task can be performed successfully, there may be one or more conver-
sations for a single use case narrative.

Copyright 2002 Wirfs-Brock Associates 23

Often, it is too big a gap to move directly from informal Use Case written in narrative form to design. Also, use
cases written at this higher level are full of ambiguities and extraneous details that have little to do with what our sys-
tem must do for the user. As you restructure use cases into conversations, you add more detail by:
• showing branching and looping,
• describing constraints on what our software should do,
• describing the context in which the conversation occurs,
• identifying the actors that initiate the activity,
• defining the “standard” course of action and alternatives to it,
• raising unanswered questions, and
• adding design notes.

TIP: This supporting information is often as important as is defining the order to the user's actions.

Notation
Use a table format to record a conversation several stylistic shorthand conventions. Other use cases invoked during

a conversation are marked in bold text. These use cases could be “used” (UML's “includes” relationship), or transfer
of control could passed via a “goto”. These control flow conventions proved extremely relevant to the UI designer
and application server implementation, but are unimportant to a high-level view of a use case.

Optional actions, for example (Indicate Setup Payees), are labelled. Show looping or repetitive steps by merging
adjacent cells in a row to bracket the beginning and end of a block of repeated or optional actions:

FIGURE 6. Showing Repetition, or an optional block of actions

Repeat

actions go here

Until proposed schedule is built

Repeat

actions go here

Until proposed schedule is built

Copyright 2002 Wirfs-Brock Associates 24

Placing dialog in adjacent cells of the same row shows an interactive round (an actor action that invokes a nearly
simultaneous system response). Placing the system response in the row immediately after the provoking action
denotes a batch round.

FIGURE 7. Conversation notation

This is an example of a dialog between the customer-user and the system. We used a table format to record this
dialog and several stylistic shorthand conventions. Other use cases invoked during payment were marked in bold text.
These use cases could be “used” (UML’s uses relationship), or transfer of control could passed via a “goto.” These
control flow conventions proved extremely relevant to the UI designer and application server implementation, but are
unimportant to a high-level view of a use case.

In the on-line bank, our web-based interface design did not allow for simultaneous interactions; instead informa-
tion would be batched and passed along with an action tied to a button. A more traditional window application or a
Java applet has the potential for many more overlapping activities.

Writing Conversations
Knowledgeable experts from diverse backgrounds can readily construct conversations. Conversations can either

be developed by a team or drafted by an individual then reviewed, explained, and revised by a small group. It is
important that teams who develop conversations blend the talents of developers, users, and other specialists. Each
contributor has a unique and valuable perspective. No perspective should dominate, yet a certain interest may take
center stage during a working session. It is important that side concerns be recorded, and worked through, perhaps as
an outside activity. Respect and appreciation for the concerns of others is important; teamwork and a spirit of joint
development is crucial. For example, in one working session, we dived into technical design details for several min-
utes, backed up to re-examine whether the flow of the conversation we had proposed was still workable, then summa-
rized what issues were solved and what new ones were raised by a single decision. Technical, user interface and
business issues were all discussed in a single session while holding everyone's attention.

One key to building a good conversation is to preserve its dual purpose of

Actor: User System: Application
 Present list of payment templates to

user organized by payee category

Select a payment template
 Present details of selected Payment

Template and recent payment
history to payee

Enter payee notes, amount and
account

Submit payment information

 Apply payment to payee
Add new payment to recent
payment list
Redisplay the payment list

Optionally, request Setup Payments
Goto Edit Payment Template
Information

Select next function
Goto selected use case

Optional
Action

Multiple
Actions

Invoking Another Use Case

Copyright 2002 Wirfs-Brock Associates 25

1. recording of the important events and information that are conveyed between the user and the
system; and

2. guiding developers who will be creating the object design model.
To meet these objectives, conversations must be written at a fairly high level. It often is the case that sequencing of

model responses (for example the details of recording a payment transaction) are not accurate reflections of the tasks
that the system must do. Yet, they need not be early on. What is important, is that an interdisciplinary team is sketch-
ing out how they expect their software system to work.

Conversations capture the flow of communication between actor and system. If the nature or the amount of infor-
mation changes significantly, the demands on your object model also change. So we suggest that you include suffi-
cient detail, and reflect changing interaction and interface design if conversations are to actually guide object
modeling.

What is a dialog?
The basic form of conversation is the dialog. A dialog is a conversation where both sides participate in a structured

sequence of rounds of interaction. Each round is a pairing of an action taken by the user, and the software system's
response to this action. A round is one of two types. It is either an interactive round or a batch round. An interactive
round features interplay of user actions and system responses. For example, the validation of a single key press
among many is typical of an interactive round. In contrast, filling out several entry fields and then submitting them all
at once is a more typical of a batch round.

This sequence of rounds establishes a necessary ordering of the interactions, and details the individual activities of
the user and the system's response in each round. Many of our conversations between human actors and our system
are of this form

FIGURE 8. General form of a conversation

Choosing Between Conversations and Scenarios
The detailed form you choose to use depends on two primary factors:

• whether or not your system has meaningful dialogs between its users; and
• personal preference

Use a scenario when:
• a simple list of actions is sufficient
• actor-system interactions aren’t interesting

Chose a conversation when:
• there are many interactions and you want to describe them
• you want to show more details in your system responses
• you want to separate the roles of actor and system and clearly identify at each point the system does for the
actor

We have written conversations for systems where there isn’t a lot of interaction between actor and system. This
becomes readily apparent from looking at the staggered pattern of filled in cells.

Most projects write high-level use case narratives, then standardize on one of the two more detailed forms to
describe all use cases. Whether you want to write conversations or scenarios may not be obvious until you understand
the nature of your system’s interactions with its users.

Actor Actions System Responses
I do this

And I respond by ..
I tell you this… I am respond to what you

are telling me and giving
you feedback while you
are talking

Batch
round

Interactive
Round

Copyright 2002 Wirfs-Brock Associates 26

Recipe: Writing Conversations

GUIDELINE: Write a conversation if it is important to show the patterns of interaction between the actor and the
system.

GUIDELINE: Write a conversation if you want to show the first cut at system-actor actions in greater detail.

GUIDELINE: If you have written a scenario and find that it does not offer you enough detail, rewrite it as a
conversation.

1. List the actor actions in the left column and the system actions in the right column.

GUIDELINE: Leave out presentation details.

GUIDELINE: Maintain a consistent level of detail.

GUIDELINE: Don’t embed alternatives in your action descriptions.

It can get complicated for your readers to deciphers nested “if then... else, if..” statements if they are liberally
sprinkled through your action statements. You can keep the statements simple if you write the “happy” path
description in the body of the conversation. Call out exceptions and variations below.

GUIDELINE: Don’t mention “objects” in system responses.

Remember that your readers what to know what is happening from an external perspective, not what the system
is doing behind the scenes. For example, rather than stating “create customer and account objects” you can
rewrite the system’s response to more clearly explain what the system has done to benefit the actor: “record cus-
tomer account information”.

GUIDELINE: Write conversations with a small group (maximum of 3).

When we first started defining the On-line Banking System, we wanted every developer to understand all facets
of the system. This quickly proved impractical and slowed everyone down. So, two of us focused on use cases
and conversations, interacting primarily with the system architect and domain expert. Eventually one person took
over maintaining use cases; everyone else used them as reference material. For example, the developer who
designed and implemented the application server only raised questions when conversations were unclear or
inconsistent, and was quite content to not always work from the latest documentation until things settled down.
The project manager and project sponsor didn't read these documents at all (unlike other projects we've worked
on where management enjoys reading and commenting on them in detail).

2. When the system has an immediate response to an actor action (such as validating a key
stroke), list them in the same row.

Pseudo-code:
Conversation: Registration with Automatic-Activation

10. If bank supports automatic activation
with ATM and PIN then...

If ATM and PIN #s are valid then....

Fixed:
Conversation: Registration with Automatic-Activation

10. Validate ATM and PIN #

Exception

Step 10: ATM and PIN #s are invalid- Report error to user

Copyright 2002 Wirfs-Brock Associates 27

GUIDELINE: Leave out information formats and validation rules.

These are best kept in a separate place that can be maintained and updated as business procedures and policies
may change. Only summarize what information is presented to or collected from the actor in the conversation.

3. When the response is delayed until an entire actor action is complete, list it in the row imme-
diately below the row with the actor action.

4. Write any assertions about the software’s states during the conversation.
5. As you consider the actions in the conversation, document any ideas about “how” in a Design

Notes section.
6. Test the conversation with a walkthrough.

GUIDELINE: Use specific examples to walk through use cases and conversations.

GUIDELINE: Trying to abstract or write more general conversations too early tends to create problems. It is
better to deal with specific situations first, then review and combine things as appropriate, after you have the big
picture. This strategy led us to write different conversations to record different typical uses. For example, we
discovered two common ways customers could make payments, one for paying same amount to the same vendor
and one where the amount paid varies. This led us to write two separate conversations, Make Similar Payment
and Make Payment. In version two, when we would support automatic payments, Make Recurring Payment
would be added to our Payment Use Case conversations.

7. Check conversations for completeness.
8. Relate the conversations through their preconditions and postconditions.

IX. Other Descriptions, Exceptions and Variations
“Other” requirements are those that are not captured within the body of a use case, or within or within other parts of
the use case template. They can either be kept in a central place or can document the use case where they seem to
apply. In fact, if you are following a rigorous requirements specification process, you may gather and record many
requirements that, while they may impact your system’s usage and design, belong elsewhere.

Keep Common Requirements in a Central Place

GUIDELINE: Document requirements spanning use cases in a central place.

For example: “Financial transactions must be secure.”, and “System must run 7x24”

GUIDELINE: Refer to specific “central” requirements by name in the use cases that they impact if this impact is
not obvious to the reader and it’s important to know.

Rules and information model embedded:
User Name: First name, last name (24 characters maximum, space

delimited)
email address with embedded @ sign signifying break between user

identification and domain name which includes domain and sub
domain names delimited by periods and ending in one of: gov, com,
edu...

Fixed:
Required: user name, email address, desired login ID and password
One of: account number and challenge data, or ATM # and PIN
Optional: Company Name

Copyright 2002 Wirfs-Brock Associates 28

Note Specific Requirements in Use Cases they Affect

GUIDELINE: Document specific requirements in the use case that they pertain to.

For example: “Registration response time must be less than one minute.”

GUIDELINE: Look for requirements that are invisible to the actor.

For example: “System must not lose any requests”, or “Application servers will be widely distributed”

GUIDELINE: Look for performance requirements that affect system behavior.

Design Notes
Design notes, if part of your use case template can “round out” your usage descriptions with ideas that occur to you
that might be useful during design. Since a use case isn’t a descriptions of a solution, don’t write these details there.
But if you think of a good design idea, you may want to jot it down and keep it with your use cases.

GUIDELINE: Add design notes as they occur to you when writing scenarios and conversations.

For example: “Errors and warnings about registration information contents should be collected and returned to
the user in a detailed message rather than stopping at the first detectable error”, and “Payments should be shown
in time order, with the current date first.”

GUIDELINE: Write design notes as hints or suggestions, not as instructions to the designer. Don’t be too
detailed.

Alternatives
Distinguishing which courses of action are the “main” paths is often difficult. We have two options for documenting
alternative courses of action (variations) and points of potential error (exceptions) in a use case. If the alternative can
be stated simply, we embed if-statements in the description. For a slightly more complex alternative, we note these
alternatives in supplemental text below the basic path. Or, when the alternative flow of events is complex, we can
write completely new use cases for these alternatives. In the latter two situations, we reference the point in the origi-
nal use case where the alternative takes place.

Variations
A variation can be a different action on the part of either the actor or the system. When you see this possibility, be
opportunistic! Don’t let the insight go by. Capture the conditional choice in an if statement, describe the difference in
supplemental text below the use case body, or write another use case. One that incorporates the alternate action. Note
the name of the new use case so that you can write it later.

Exceptions
On the other hand, actions that have the potential for errors, again, on the part of either the actor or the system.

Treat these errors similarly to variations, but note them under a separate heading in the supplementary part of the use
case template. They are the source of many of the error-handling requirements of the system.

GUIDELINE: Describe the exception and its resolution. Identify whether it is recoverable (e.g. the actor can
continue on with his/her task in some fashion) or unrecoverable.

GUIDELINE: For each recoverable exception describe how the actor/system needs to respond to make forward
progress.

GUIDELINE: For each unrecoverable exception, make clear what state the system returns to after detecting this
condition, and how the actor is notified of this condition.

Copyright 2002 Wirfs-Brock Associates 29

Activity Diagrams
Activity Diagrams are a UML standard way of describing sequences of actions, the dependencies among them, and
the parallelism and synchronization characteristics. Use them as a way of visualizing activities at several levels: the
process level that demonstrates how different use cases interact, the task level that shows the activities of a user when
performing a use case, and the subfunction level that shows the internal workings of a single step, whether it be per-
formed by a user or a computer program.

These elements show an activity (the oval), synchronization of activities (the synchronization bar), decision-mak-
ing (the diamond), pre and post conditions (the guards, text inside the square brackets annotating the arrows), and
iteration (the asterisk on annotating an arrow).

This activity diagram demonstrates the actions that take place when “Making a Payment”. It is at the task level and
describes a single use case.

GUIDELINE: Use an activity diagram to describe a single use case. The goal is to understand what actions that
take place and the dependencies between them

GUIDELINE: Use an activity diagram to understand workflow across use cases. Activity diagrams are great for
showing connections and dependencies between the use cases of an application.

GUIDELINE: Use an activity diagram to show parallel activities. Activity diagrams are particularly good at
showing parallelism, synchronization, and pre and post conditions.

Recipe: Writing Exceptions
The typical paths through the use case is specified in primary descriptions. Alternatives to these paths can be writ-

ten as secondary use cases, or named in variations and exceptions sections.
1. Look for potential exceptions in each primary use case.

GUIDELINE: When looking for exceptions, ask:

• Is there something that could go wrong at this point? (exception)
• Is there some exceptional behavior that could happen at any time?

Enter Amount

[no]
[yes]

Choose Acct

*
for each payment

Customer Access
Payment
Screen

Choose
Vendor

Enter Amount

Choose Acct

[other]
[default]

Submit
Payment

Verify
Payment

Copyright 2002 Wirfs-Brock Associates 30

GUIDELINE: Be opportunistic! Document the exceptions whenever they occur to you.

The first step is identifying the exception. The next step is resolving how it will be handled.

GUIDELINE: Keep the exceptions at the same level of abstraction as the use case description.

2. Determine which exceptions should be written as separate use cases.

GUIDELINE: Defer writing these secondary use cases until you feel satisfied with your primary ones.

GUIDELINE: Write secondary use cases according to the recipe and guidelines for primary ones.

3. Document the exceptions.

GUIDELINE: Describe the exception condition. Note whether it can be recovered from or not. Describe the
actions the actor or system take to recover; or to end the use case in an unrecoverable situation.

GUIDELINE: Choose the clearest way to describe how the exception is handled

Options include:
• Briefly describe what happens, or
• Refer to another use case that describes the exception handling

4. Refer to the place in the original use case where the exception takes place.

GUIDELINE: Insert footnote numbers or tags into the main scenario, and tag the alternatives with the same
number.

Recipe: Writing Variations
The typical path through the use case is specified in the body of the use case. Alternatives to these paths can be

written as secondary use cases, or named in variations sections.
1. Look for potential alternatives in each use case body.

GUIDELINE: When looking for variations, ask:

• Is there some other action that can be taken at this point?

GUIDELINE: Be opportunistic! Document the variations whenever they occur to you.

2. Determine which variations should be written as new use cases.

GUIDELINE: Defer writing these secondary use cases until you feel satisfied with your primary ones.

GUIDELINE: Write secondary use cases according to the recipe and guidelines for primary ones.

3. Document the variations.

GUIDELINE: If the variation is easily added to the use case body, put it there. Show that variations are optional
by indicating that one of several choices can be made for a particular step.

GUIDELINE: If the description of variations clutters up a use case description, write about it in the
supplementary part of the use case template.

Refer to the place in the original use case where the variation takes place.

Copyright 2002 Wirfs-Brock Associates 31

GUIDELINE: Insert footnote numbers or tags into the main body, and tag the variation with the same number.

Assertions
Assertions about our system’s behavior are useful for:

• Generating the flow of system events
• Determining use case dependency relationships
• Understanding the states of the application

We make three kinds of assertions: preconditions, postconditions, and constants.

Pre-conditions
Pre-conditions are what must be true of the state of the application for the use case, scenario or conversation to be
applicable. They can also imply the possibility of some order of the use cases, as we will see in the next section on
post-conditions.

Post-conditions
Post-conditions are what must be true of the state of the application as a result of completion of the use case, sce-

nario, or conversation.
For example, in the On-line Banking Make a Payment use case, debiting an account leaves the system in one of two
states:
• InGoodStanding
• OverDrawn

These post-conditions of Make a Payment lead to two different system states. In the first case: “OverDrawn” leads
to not permitting another make payment use case to execute (until the Account is InGoodStanding) because InGood-
Standing is a precondition for Make a Payment. In the second case, InGoodStanding enables another Make a Payment
to be executed.

GUIDELINE: Document pre and post-conditions where the system responds differently as a result.

We have seen many people struggle with the question, “what’s a good post condition?” A bad post condition
adds clutter and doesn’t add any information. Restatements of the actor’s goal don’t add information. If the goal
is to Make a Payment, then saying that a payment has been made doesn’t add any information. A good test of a
post-condition is that it states something about the system that may or may not be obvious from completing a use
case. And, ideally, a post-condition may enable another use case to be executed.

Example of a poorly stated post-condition that restates the use case goal:

Post-condition: Customer has withdrawn cash

So what? The customer receives cash but what does this say about the next time he/she wants to withdraw case,
or any other use case?

Fixed:

Post-condition 1: Account balance is positive

Post-condition 2: Account is overdrawn

Note that the user may have achieved his/her goal, to withdraw cash, but depending on the amount withdrawn
and the account’s balance, his/her account may be in one of two possible states after successfully withdrawing
cash. Now that’s interesting!

GUIDELINE: Specify pre- and post- conditions only when you need to be formal

Once you add pre- and post-conditions to one use case, you will need to add them to dependent ones! A use case
model that only has pre and post-conditions on a few use cases begs the question, is this complete or are there
gaps in this specification?

Copyright 2002 Wirfs-Brock Associates 32

GUIDELINE: Check for completeness of use case dependencies by asking how each use case is enabled, and the
conditions it sets that enable others.

Example: Pre-conditions should make clear when a use case can execute

 An account must be in good standing and the daily withdrawal limit not exceeded in order to withdraw cash

Post-conditions may be relevant to other systems

 Being overdrawn may trigger transaction fees

Pre-conditions may be set by other systems

 An account can be overdrawn through direct payments

GUIDELINE: Complete the specification of pre and post-conditions by documenting the possible states of the
system after each exceptional condition, and each variation of a step.

Example:

Often, there are multiple post-conditions for one scenario or conversation

At least one for each successful goal...

 Customer receives cash? Account is overdrawn or Account balance is positive

One for each exception...

 Account daily limit would be exceeded - Customer withdraws lesser amount? Account is in good standing and
Account daily withdrawal limit reached

 Amount would exceed overdraw limit - We refuse to disburse cash? account is in good standing

One or more for each variation...

Fast cash? Account is overdrawn or Account balance is positive

Constants
Constants, sometimes called invariants are what must be true of the state of the application during the entire

progress of the use case, scenario, or conversation. They are often contextual and must not be changed at any moment
during the use case.

GUIDELINE: Be careful about getting too formal. Assertions tend to make requirements look incomplete if they
vary in their formality.

GUIDELINE: Use pre-conditions to make it clear when a conversation might execute.

GUIDELINE: Write post-conditions as if you were going to use them as a basis for writing a test plan. You are.

GUIDELINE: Write constants to describe conditions that should not change during the conversation.

X. Use Case Model Checklist
At the end of the day, the goal of a usage model is to convey how a system behaves and responds to its users. A good
usage model conveys how a system behaves, and how behaviors are related.

You can look over a use case model to:
• Check for internal consistency between use cases
• Identify “central” use cases
• Identify unmet or externally satisfied preconditions
• Review the actor’s view for completeness
• Review the handling of exceptions
• See that use case dependencies, extensions and includes relationships have been documented

Copyright 2002 Wirfs-Brock Associates 33

Organizing Your Use Cases
Organizing use cases is important. A pile of usage descriptions, arranged alphabetically, doesn’t orient readers to

the usage terrain. We suggest that you choose an organization that helps orient your typical reader.
Some possible organizations:

• by level (summary first, core next, supporting, then internal ones last)
• by actor
• by type of task

 arranged in a workflow
Be consistent. Keep various forms of a single use case together.

XI. A Use Case Writing Process
The task of writing can be shared, but the best way to develop a common language is for teams to work on developing
a rhythm to their work. Sometimes it is best to get group consensus, othertimes it is best to work alone (or in a small
group) to create use cases that others can review. Writing, like programming, can be done solo, then reviewed as a
group. Once you pick a template and learn the common ideas, you can try writing solo, then critiquing as a group.
Group review can lead to a common style and format for usage descriptions. We suggest this process as one way to
work collectively and individually to develop a use case model:

FIGURE 9. A Process for Developing a Use Case Model that includes both team and individual work.

Note: Although not everyone is a skilled writer, most developers can write good use cases. It is a matter of writing
and reading good use cases (and then adopting a common style). This involves practice and critical review.

XII. Tips and Techniques
We have pulled many commonsense writing guidelines from Ben Kovitz’s wonderful book Practical Software
Requirements. They were either paraphrased or taken verbatim from his chapter on writing. Other guidelines on what
extra efforts can have big payoffs come from our experience. If you apply these principles to your writing of use
cases and other technical writing, your readers will be the beneficiary of your efforts.

Revised Use Cases with
Supplementary Details

Revise and add precision

Potential new Use CasesCollect and clinic, identify
gaps and inconsistencies

Scenarios OR
conversations

Write detailed
descriptions

Candidate Core Use Case
Names

Collect and clinic,
brainstorm key use cases

NarrativesWrite summary
descriptions

Actors, Candidate
Summary Use Case
Names

Align on scope, level of
abstraction, actors, goals,
point-of-view

The ProductsSmall Teams or
Individuals

Full Team

Revised Use Cases with
Supplementary Details

Revise and add precision

Potential new Use CasesCollect and clinic, identify
gaps and inconsistencies

Scenarios OR
conversations

Write detailed
descriptions

Candidate Core Use Case
Names

Collect and clinic,
brainstorm key use cases

NarrativesWrite summary
descriptions

Actors, Candidate
Summary Use Case
Names

Align on scope, level of
abstraction, actors, goals,
point-of-view

The ProductsSmall Teams or
Individuals

Full Team

Copyright 2002 Wirfs-Brock Associates 34

Broad Principles

GUIDELINE: Read other people’s writing. If your own documents are hard to understand, you don’t notice
because you already know what it’s supposed to say.

Writing is a craft. If writing is a large part of your job, people will judge you not on the basis of your thinking,
but on the basis of your writing.

GUIDELINE: Write for human beings.

• Is there a way to express this that would be easier to understand?
• Am I overloading the reader with too much information at once? Should I provide some sort of roadmap, or
break it up into smaller sections or smaller sentences?
• Which details are more important to my readers and which are less important? How can I make clear which
details are which?
• Is this statement too abstract for my readers to understand without illustration? Are these details too narrow
and disconnected for my readers to understand without explaining the underlying principle common to them all?
• What reasonable misinterpretations could my readers make when reading this passage?
• Will my readers see any benefit from reading this section? How does it relate to my specific reader’s job?
Does anyone have a reason to care about this? Will people see this as a waste of time?
• What is the feel of the writing?
• Is the document boring? Would anyone want to read it?

GUIDELINE: Choose the best alternative for expressing your thought, despite the rules.

GUIDELINE: When you have information that can be presented in a list, it is usually the best way. People like
lists

GUIDELINE: Choosing the way to say something should derive from the content.

GUIDELINE: use a consciously designed organization for your document. Then there is “a place for every detail,
every detail in its place.”

GUIDELINE: Reinforcement makes a document understandable. Illustrations, overviews, section headings.
Repetition, on the other hand, is decoy text.

Decoy Text

GUIDELINE: Avoid metatext. Text that describes the text that follows.

GUIDELINE: Avoid generalities.All information in a requirements document should be specific to the software
to be built.

GUIDELINE: Avoid piling on words or explanations.

Remove clutter at all levels. You can clutter sentences, words, paragraphs, or sections of documentation with
extra meaningless words. Overbearing templates also contribute to clutter.

An example:

 Piling on: Business Use Case

 Clutter Removed: Use Case

Another example:
 Piling on: Requirements Specification Document

 Clutter Removed: Requirements

GUIDELINE: Keep extraneous documents out of your requirements document. Schedules, acceptance criteria,
traceability matrices, feedback forms, etc.

Copyright 2002 Wirfs-Brock Associates 35

Avoiding Common Mistakes

GUIDELINE: Put related material together. Avoid making your document a jigsaw puzzle.

GUIDELINE: Don’t mix requirements with specification. The what with the how. Don’t confuse means with
ends.

GUIDELINE: Choose the most appropriate vocabulary for expressing a requirement. Don’t force fit your
descriptions into inappropriate diagrams, charts, and tables just because they are “usual”.

GUIDELINE: Avoid “Duckspeak” (from 1984). Meaningless sentences expressing conformation to standards.

For example, “The order data validation function shall validate the order data.”

GUIDELINE: Know the vocabulary of your readers and use it. Don’t invent unnecessary terminology.

GUIDELINE: Be aware of what content you are putting in your document. Don’t mix levels.

Jumping back and forth between program design, requirements, and specification will only confuse the reader.

GUIDELINE: Don’t start with a table of contents taken from another document.

This is equivalent to forcing the content of one document into the table of contents of another

GUIDELINE: Use consistent terminology.

GUIDELINE: Don’t write for the hostile reader. Assume the reader will try to understand.

GUIDELINE: Make the requirements document readable. If it is not, the development staff won’t read it.

Poor Uses of Documentation

GUIDELINE: Avoid documentation for the sake of documentation. Don’t try to make your documentation an
end in itself.

GUIDELINE: Requirements documents are not written to impress the customer with double-talk.

GUIDELINE: Don’t write a CYA document. In these cases, most information must be communicated to the
development staff by oral tradition.

GUIDELINE: Write questions about unsolved issues.

Put them with the appropriate use case description (or with the document you are working on) to show you’re not
done.

Example: Should the credit check be performed after the Order is submitted or before? What happens if credit is
denied?

GUIDELINE: If you are unclear about a detail, don’t write fiction; it could become fixed.

Guidelines for each element of a Use Case Template
In addition to the above general guidelines for writing, we offer these specific guidelines for writing use cases drawn
from our direct experience.

Use Case Name:
A name of some actor task to be accomplished with the system. Name it from the actor’s point of view

Copyright 2002 Wirfs-Brock Associates 36

Good Example: Place an Order, or Cancel an Order, or Make a Payment
Bad Example: Process Order Record
This is named from the system’s point-of-view
Bad Example: Placing an Order
This is not stated with an active verb

Narrative Description:
A high-level narrative paragraph describing activities of a task

Actors:
Role names of Person or External System initiating this use case

Good Example: bank customer
Bad Example: novice user
This is a skill level, not a role. If novices do things differently, than skilled users, then perhaps their different
forms of interaction might be described… but the role is user (not novice or skilled user)

Context:
A description about the current state of the system and the actor

Good Example: The bank customer is a primary user
Bad example: The customer wants cash
So what? Expressing desires clutter our descriptions. Always assume actors want to accomplish some goal,
and that the system is ready to respond. Don’t state the obvious.
Bank customer: The bank customer is logged on
This is obvious. Don’t state the obvious. It adds clutter.

Level:
Is it Summary, Core, Supporting or Internal?

Example:
Place Order (summary)
Order Long Distance Phone Service (core)
Enter Customer Address (supporting)
Obtain Secure Connection (internal)

Preconditions:
Anything significant about the system that must be true. Usually stated in terms of key concepts and their states.

Good Example: A bank customer’s account is in good standing
This must be true before he can make a withdrawal
Bad Example: The bank customer is logged in
This is context, not something true about the state of the system

Post conditions:
Anything that has changed in the system that will affect future system responses as a result of successfully com-

pleting the use case. Usually stated in terms of key concepts and their states.
Good Example: The bank customer’s account is overdrawn
This means that the customer cannot make another withdrawal until the account balance is positive
Bad Example: The bank customer received cash
This says nothing about how the system will respond in the future

Copyright 2002 Wirfs-Brock Associates 37

Business Policies:
Business specific rules that are always true that must be enforced by the system.
Test for whether a policy is application specific or a business policy: Who established this policy? Was it the applica-
tion designer, or was it the way we do business?

Good Example: Shipping dates must not fall on Sunday or holidays
Bad Example: The system must determine the shipping date
This is a statement of something the system must do, a system responsibility, not a rule that the system will
enforce.

Application Policies:
Limits on the way than an application can behave.
Here’s a simple test for whether a policy is application specific or a business policy: Who established this policy?
Was it the application designer, or is this the way we do business?

Good Example: A user cannot incorrectly enter a password more than three times during a login attempt
Bad Example: The password is encrypted then matched with the stored encrypted password
This states how the system is going to validate the password, a system responsibility

Alternatives:
Deviations from a step that occur due to exceptions or decisions made by the system or actor. An alternative can
either be a variation or an exception.

Variations Optional actions for a step that are normal variations (not errors)
Exceptions Errors that occur during the execution of a step
An alternative form can be written as either

• Step number. Variation or Exception Name – Brief statement of how this alternative will be
handled,

Example:
Scenario: Identify Customer
1. Operator enters name
2. System finds and displays near matches

Variations:
1a. Operator enters billing address
1b. Operator enters phone number
1c. Operator enters customer address

Exceptions:
2a. No near match found— Notify operator to retry search
2b. Too many near matches found— Notify operator how many matches were found, and give option to nar-
row search or display matches

or, if handling the alternative warrants it:
• Step number. Reference to Use Case that describes the interactions with the system to handle

the alternative
Good example:

Scenario: Identify Customer
1. Operator enters name
2. System finds and displays near matches

Exceptions:
2a. Too many near matches found— use Narrow Search Request

Copyright 2002 Wirfs-Brock Associates 38

Issues:
Questions that need to be resolved about this use case, scenario or conversation.
Issues should be stated simply. If you know who should resolve this issue, identify them.

Good Example:
Should a credit check be performed for new customer before placing orders? Should credit checking be
performed if an order exceeds a certain amount? To be resolved by: John
Bad Example:
What about credit checking?
(What is meant by this question? Is it unclear exactly what the issue with credit checking is.)

Design Notes:
Design decisions that occur to you as you describe the usage

Good Examples:
If the bank does not permit automatic activation, the fields for ATM and PIN number should not be dis-
played. (Hints to the application designer)
User Beware! If the user enters an incorrect ATM PIN number, it is possible that he could be suspended
from use of his/her ATM. We must be sure to let the user know about that error.
(Important notes about how the errors should be presented to the user— from the analyst’s perspective)

Bad Example:
All errors should be reported to the user.
(Too vague. What’s a designer to do with this note?)

Screens:
References to windows or web pages that are displayed during the execution of this use case

Good Examples:
Include a reference to a hand drawn “sketch” of a UI or a mock-up (this is good in early prototyping).
Include a prototype screen “captured” off the display. Label important important elements where infor-
mation is gather and/or presented, and important user actions occur.
Bad Example:
Include detailed screens after they are implemented

 (Too specific. What’s the point of showing this level during requirements?)

Priority:
How important is this?

Frequency:
How often this is performed?

Good Example: 200 times a month
Bad Example: 200 times (What’s the unit of time?)

