
Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	1	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	
Design	Heuristics?	
REBECCA	WIRFS-BROCK,	Wirfs-Brock	Associates	

Billy	Vaughn	Koen,	in	Discussion	of	the	Method:	Conducting	the	Engineer’s	Approach	to	Problem	Solving,	defines	a	heuristic	as	anything	that	
provides	a	plausible	direction	in	the	solution	of	a	problem,	but	in	the	final	analysis	is	unjustified,	incapable	of	justification,	and	potentially	
fallible.	 Software	 patterns	 might	 be	 considered	 nicely	 packaged	 heuristics	 in	 that	 they	 provide	 a	 context	 for	 the	 problem,	 and	 offer	
plausible	 solutions	 along	 with	 forces	 that	 the	 designer	 needs	 to	 consider	 when	 implementing	 a	 solution.	 Like	 any	 heuristic,	 software	
patterns	 come	 with	 no	 guarantees	 that	 they	 will	 solve	 the	 current	 problem	 at	 hand.	 A	 dedicated	 group	 of	 authors	 in	 the	 patterns	
community	continues	to	write	patterns,	collections	of	patterns,	and	more	ambitiously	weave	patterns	into	pattern	languages	that	attempt	
to	cover	paths	to	solutions	in	a	particular	problem	space.	Are	we	deluding	ourselves	about	the	utility	of	these	efforts?	Or	is	there	something	
important	about	both	the	form	and	use	of	patterns	in	the	larger	context	of	design	heuristics	that	we	need	to	understand?	

Categories	 and	 Subject	 Descriptors:	 •	Software	 and	 its	 engineering~Software	 design	 engineering	 		 •	Software	 and	 its	
engineering~Software	design	tradeoffs			•	Software	and	its	engineering~Design	patterns	

ACM	Reference	Format:	

Wirfs-Brock,	 R.	 Are	 Software	 Patterns	 Simply	 a	 Handy	 Way	 to	 Package	 Design	 Heuristics?	 24th	 Conference	 on	 Pattern	 Languages	 of	
Programming	(PLoP),	PLoP	2017,	Oct	23-25	2017,	15	pages.	

1. INTRODUCTION	

We	have	been	writing	patterns	 for	over	 twenty	years.	The	patterns	community	has	branched	 from	 its	 initial	
software	 patterns	 roots,	 to	write	 patterns	 encompassing	many	 areas	 of	 human	 endeavor	 including,	 but	 not	
limited	 to,	 human	 interactions	 and	 collaborations,	 project	 management,	 software	 development	 processes,	
organization	 design,	 change,	 leadership,	 collaborative	 endeavors,	 beauty,	 teaching,	 pedagogy	 and	 learning.	
While	 there	 is	 evidence	 that	 software	 design	 and	 architecture	 patterns	 have	 successfully	 been	 applied	 in	
different	contexts	[Hohp],	my	aspiration	is	for	these	patterns,	and	software	design	heuristics	in	general,	to	have	
a	much	broader	impact.		

So	what	will	it	take	specifically	for	software	patterns	to	become	more	widely	known,	shared	and	used	along	
with	 other	 software	 design	 heuristics	 and	 practices?	 Are	 there	 things	 we	 can	 learn	 about	 the	 nature	 of	
patterns,	how	they	are	described,	and	how	they	are	understood,	chosen	and	then	applied	that	can	improve	our	
ability	to	communicate	our	patterns?	

Inspired	by	Billy	Vaughn	Koen’s	philosophy	of	engineering	heuristics,	as	explained	in	his	Discussion	of	the	
Method:	 Conducting	 the	 Engineer’s	 Approach	 to	 Problem	 Solving	 [Koen],	 this	 essay	 explores	 some	
characteristics	of	patterns,	forms	connections	between	patterns	and	Vaughn	Koen	heuristics,	and	lays	out	some	
challenges	(and	frustrations)	in	using	both	skillfully.		

2. THE	CONNECTION	BETWEEN	HEURISTICS	AND	PATTERNS	

In	Discussion	of	the	Method,	Billy	Vaughn	Koen	defines	a	heuristic	as,	“anything	that	provides	a	plausible	aid	or	
direction	 in	 the	 solution	 of	 a	 problem	 but	 is	 in	 the	 final	 analysis	 unjustified,	 incapable	 of	 justification,	 and	
potentially	fallible.”	Engineers	try	to	create	practical	solutions	to	problems	that	are	not	fully	understood.	If	you	
desire	 to	 create	 or	 change	 a	 system	 (whether	 social,	 political,	 physical	 or	 otherwise),	 opting	 for	 what	 you	
consider	to	be	the	best	available	heuristics	to	apply	as	you	balance	conflicting	or	poorly	understood	criteria	for	
success,	then	you	are	solving	an	engineering	problem.	Rarely	are	engineering	problems	well	defined.	Instead,	
we	determine	what	the	actual	problem	is	based	on	diffuse,	changing	requirements.	To	solve	that	problem,	we	
successively	 apply	heuristics	based	on	our	 imperfect	 knowledge	of	both	 the	 current	 situation	as	well	 as	 the	
outcome	of	taking	any	specific	action.	Yet	we	press	onward,	applying	heuristics	because	we	believe	our	actions	
will	likely	result	in	positive	changes.	
	
__
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	 this	work	for	personal	or	classroom	use	 is	granted	without	 fee	provided	that	
copies	are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	copies	bear	this	notice	and	the	full	citation	on	the	first	page.	
To	copy	otherwise,	to	republish,	to	post	on	servers	or	to	redistribute	to	lists,	requires	prior	specific	permission.	A	preliminary	version	of	
this	paper	was	presented	in	a	writers'	workshop	at	the	24th	Conference	on	Pattern	Languages	of	Programs	(PLoP).	PLoP'17,	OCTOBER	23-
25,	Vancouver,	BC,	Canada.	Copyright	2017	is	held	by	the	author(s).	HILLSIDE	978-1-941652-06-0	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	2	

According	to	Koen,	heuristics	have	these	distinguishing	characteristics:	
1.		A	heuristic	does	not	guarantee	a	solution	
2.		A	heuristic	may	contradict	other	heuristics	
3.		A	heuristic	reduces	the	search	time	for	solving	a	problem	
4.	 The	 acceptance	 (or	 applicability)	 of	 a	 heuristic	 depends	 on	 the	 immediate	 context	 instead	 of	 an	
absolute	standard.	

Heuristics	 offer	 plausible	 approaches	 to	 solving	problems,	 not	 infallible	 ones.	 There	 is	 always	 a	 chance	 that	
applying	a	heuristic	won’t	move	you	closer	 to	your	goal.	Yet	even	though	heuristics	can	 fail,	 they	are	readily	
applied	to	solve	complex	problems	where	the	nature	of	the	problem	or	the	desired	characteristics	of	a	solution	
(or	even	a	plausible	direction	forward)	may	not	be	clear.	You	choose	a	heuristic	if	it	seems	to	fit	the	situation	at	
hand,	rather	than	asking	how	good	is	it	compared	against	some	gold	standard.	This	is	contrast	to	the	scientific	
standard	of,	“is	it	consistent	with	the	assumed	truth	as	we	currently	know	it?”	

It	is	worth	a	short	digression	to	contrast	scientific	theories	with	heuristics.	If	two	scientific	theories	predict	
different	 answers	 to	 a	 question,	 the	 scientific	 method	 to	 resolve	 this	 conflict	 is	 to	 devise	 experiments	 that	
conclusively	show	that	one	theory	is	better	because	it	explains	more	of	what	is	observed	than	the	alternative,	
competing	theory.	Any	new,	better	theory	needs	to	be	consistent	with	pre-existing	experimental	results	and	in	
general,	 at	 least	 as	 accurate	 in	 its	 predictions	 as	 any	 pre-existing	 theory.	 Scientific	 theory	 building	 seeks	 to	
weed	out	lesser	theories	and	supplant	them	with	more	elegant,	simpler,	or	encompassing	explanations.	Science	
seeks	 single,	 better	 truths.	 In	 a	 Darwinian	world	 of	 scientific	 theories,	 one	 theory	wins	 out	 against	 another	
because	it	 is	better	at	describing	and	predicting	observable	outcomes.	Einstein’s	theory	of	relativity	replaced	
Newton’s	 laws	 as	 a	 more	 encompassing	 scientific	 truth.	 Yet	 in	 engineering	 problem	 solving	 we	 still	 use	
Newton’s	law	of	gravitation	because	it	quickly	yields	an	excellent	approximation	of	the	effects	of	gravity	when	
dealing	with	smallish	masses	travelling	at	sub-light	speed.	General	relativity	is	required	only	when	there	is	a	
need	for	extreme	precision;	when	dealing	with	strong	gravitational	fields,	such	as	those	found	near	extremely	
massive	dense	objects;	or	at	very	close	distances	such	as	Mercury’s	orbit	 around	 the	 sun.	Newton’s	 law	still	
works;	but	as	a	pretty	useful	heuristic,	not	an	absolute	law.		

Heuristics	are	all	about	context,	not	conflict.	 If	a	heuristic	 is	useful	and	expedient,	by	all	means	pick	 it	up	
and	use	it!	As	noted,	Newton’s	law	of	gravitation	works	for	most	practical	engineering	applications.	However,	
heuristics	are	not	timeless.	When	we	had	to	really	worry	about	memory	footprint,	software	design	heuristics	
for	overlaying	code	and	creating	efficient	data	structures	were	extremely	 important.	While	 they	still	may	be	
useful	in	certain	contexts,	new	memory	organizations	and	multi-core	processors	have	created	different	design	
concerns.	Heuristics	may	fade	from	disuse	because	they	are	no	longer	so	useful.	

But	software	design	heuristics	may	simply	fade	from	use	(even	if	still	useful)	because	they	are	no	longer	in	
fashion.	 And	 technology	 drives	 fashion.	 If	 micro	 services	 and	 cloud-based	 computing	 are	 in,	 new	 patterns	
written	about	them	will	push	aside	older	Pattern-Oriented	Software	Architecture	[Busc]	patterns.	

So	how	are	heuristics	and	patterns	related?	Are	patterns	simply	a	particular	formulation	of	a	heuristic,	or	is	
there	something	more	to	patterns	and	patterns	languages?	

Patterns	 describe	 and	 characterize	 potential	 solutions	 to	 common	 or	 recurring	 problems.	 Christopher	
Alexander	in	Notes	on	the	Synthesis	of	Form	[Alex]	cautions	that,	“in	the	case	of	a	real	design	problem,	even	our	
conviction	 that	 there	 is	 such	 a	 thing	 as	 fit	 [of	 solution	 to	 problem]	 to	 be	 achieved	 is	 curiously	 flimsy	 and	
insubstantial.	We	are	searching	for	some	kind	of	harmony	between	two	intangibles:	a	form	which	we	have	not	
yet	designed,	and	a	context	which	we	cannot	properly	describe.”		

Patterns,	pattern	collections,	and	pattern	languages	are	our	attempt	at	communicating	nuances	of	problems	
and	plausible	approaches	to	solving	them.	What	is	unique	about	software	patterns	is	that	they	don’t	just	tell	a	
designer	 what	 to	 do.	 In	 addition,	 they	 can	 provide	 a	 rich	 context	 that	 explains	 under	 what	 situations	 the	
pattern	 has	 been	 found	 to	 be	 useful,	 tradeoffs	 to	 consider,	 and	 an	 outline	 of	 a	 potential	 solution	 and	
consequences	of	applying	that	solution.		

Software	 patterns	 are	 neatly	 “packaged”	 heuristics	 that	 offer	 design	 wisdom	 along	 with	 plausible	 steps	
forward.	Software	pattern	languages	are	even	more	ambitious.	They	group	and	relate	patterns	in	a	particular	
problem	domain,	showing	not	only	how	individual	patterns	relate,	but	how	a	larger	problem	can	be	tackled	by	
decomposing	it	into	smaller	sub-problems-with-potential-solutions,	each	written	as	individual	patterns.		

Restating	 Vaughn	 Koen’s	 heuristic	 characteristics	 in	 terms	 of	 patterns,	 we	 get	 these	 statements	 about	
patterns:	

1.	A	heuristic	The	application	of	a	pattern	does	not	guarantee	a	solution	
2.	A	heuristic	pattern	may	contradict	or	compete	with	other	patterns	heuristics	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	3	

3.	 A	 heuristic	 pattern,	 pattern	 collection,	 or	 pattern	 language	 reduces	 the	 search	 time	 for	 solving	 a	
problem	
4.	The	acceptance	(or	applicability)	of	a	heuristic	pattern	depends	on	the	immediate	context	instead	of	
an	absolute	standard.	

Let’s	see	how	these	characterizations	apply	to	software	patterns,	patterns	collections	and	pattern	languages.	

2.1 The	application	of	any	pattern	does	not	guarantee	a	solution.	
Certain	pattern	forms,	in	particular	the	early	software	design	patterns	described	in	Design	Patterns:	Elements	of	
Reusable	 Object-Oriented	 [Gamma]	 emphasized	 evidence	 of	 their	 patterns’	 utility.	 They	 cited	 references	 to	
proven	implementations	that	used	their	patterns.	In	the	early	days	of	pattern	writing,	Jim	Coplien	coined	the	
“rule	of	three”	[Copl]:	If	you	couldn’t	find	three	distinct	instances	of	a	potential	pattern’s	use,	it	is	not	worthy	of	
being	considered	a	pattern.	This	“rule”	may	have	helped	weed	out	patterns	that	weren’t	utilitarian	enough	(and	
originally,	 it	 was	 intended	 to	 weed	 out	 academic	 research	 that	 hadn’t	 been	 put	 into	 practice),	 but	 the	 fact	
remains:	using	a	pattern	won’t	guarantee	a	solution	to	your	specific	problem.	

Yet	does	 simply	having	 solved	a	problem	 three	 times	using	a	 similar	 approach	mean	 that	 it	 is	worthy	of	
being	a	pattern?	Or	a	useful	heuristic?	When	does	a	potential	 solution	 to	a	 recurring	problem	cross	 into	 the	
realm	of	being	a	broadly	useful	solution,	whether	guaranteed	or	not?	

As	a	pattern	author,	I	tend	to	conservatively	offer	up	my	patterns,	taking	care	not	to	over-	or	undersell	their	
utility.	I	am	not	alone	in	this.	

This	 tentativeness	 seems	 to	 be	 part	 of	 our	 pattern	 writing	 culture.	 I’ve	 been	 to	 many	 PLoP	 writers’	
workshops	where	we	spend	a	great	deal	of	time	trying	to	line	up	forces	with	solutions	(and	try	to	come	up	with	
both	 negative	 and	 positive	 consequences	 of	 applying	 a	 pattern).	 There’s	 both	 an	 upside	 and	 a	 downside	 to	
using	any	pattern.	We	know	that	as	software	makers.	We	pattern	writers	are	a	conservative	bunch.	

Some	pattern	authors	include	cautions	and	conditions	and	consequences	of	using	their	patterns.	Some	also	
include	alternative	solutions	and	variations.	As	a	nuanced,	informed	pattern	reader,	I	like	to	know	my	options.	
Because	I	know	patterns	are	not	foolproof,	I	find	myself	drawn	to	pattern	forms	that	contain	descriptions	full	
of	subtleties,	alternatives,	and	caveats.		

Readers	of	these	richer	pattern	texts,	those	filled	with	forces	and	considerations	and	solution	variants	and	
extra	 discussions,	 have	 to	 engage	 deeply	 with	 the	 pattern	 before	 they	 can	 determine	 whether	 it	 fits	 their	
specific	problem.	

In	the	early	days	of	patterns,	I	remember	people	forming	study	groups	to	fully	appreciate	the	GOF	patterns1.		
Rich	pattern	forms	force	readers	to	think	deeply	and	come	to	their	own	convictions	and	conclusions	about	

whether	that	particular	pattern	is	useful.	It	is	almost	a	rite	of	passage:	if	you	can	read	and	comprehend	all	these	
things	about	this	pattern,	maybe	then	you	are	worthy	of	using	it.	

Pattern	readers	 looking	 for	quick	 fixes	 to	 their	problems	or	ready-at-hand	solutions	can	be	 frustrated	by	
the	effort	it	takes	to	understand,	yet	alone	apply	such	patterns.	

Yet,	 as	 a	 learner	 of	 a	 new	pattern,	 I	may	want	 to	 know	 its	 pedigree.	Wow!	 It	 has	 been	 used	 in	 all	 these	
situations.	I	could	use	it,	too.	Still	I	need	to	see	rather	quickly	how	I	can	apply	it	to	my	problem.	

In	an	unscientific	study,	at	the	time	I	wrote	this	paragraph	(July	12,	2017),	I	compared	the	Amazon	rankings	
for	Head	First	Design	Patterns:	A	Brain-Friendly	Guide	 (a	 fun-packed,	 lightweight	way	to	 learn	the	23	original	
design	 patterns)	with	Design	 Patterns:	 Elements	 of	 Reusable	Object-Oriented	 Software	 (the	 original	 source	 of	
those	patterns).	Head	First’s	overall	 ranking	 in	all	books:	3,851;	Design	Patterns’	ranking:	10,481.	Even	more	
telling,	Head	First	 is	ranked	1st	 in	the	system	analysis	and	design,	object-oriented	design,	and	object-oriented	
software	design	categories,	while	Design	Patterns	 is	1st	 in	software	reuse	and	5th	 in	object-oriented	software	
design.	 Perhaps	 inexperienced	 designers	 today	 (or	 their	 instructors)	 prefer	 more	 straightforward,	 simple	
writing	or	want	fun,	engaging	ways	to	learn.	

I	suspect	an	even	larger	potential	audience	finds	them	online.	More	experienced	developers	who	also	have	
the	time	and	the	 inclination	to	read	detailed	 information,	might	prefer	those	original	patterns.	But	not	when	
they	are	seeking	easy-to-digest	advice	 for	solving	their	current	design	problem.	They	may	be	 impatient	with	
details.	They	may	not	be	looking	for	options.	And	design	nuances,	especially	for	an	unfamiliar	topic,	will	be	lost	
on	them.	

It	takes	confidence	to	read,	comprehend,	and	critique	detailed	design	patterns.	I	used	to	teach	object-design	
courses	to	professional	software	developers	when	object	technology	was	relatively	new.	As	part	of	the	course	I	

1 The authors of Design Patterns are sometimes referred to as the Gang of Four or GoF.

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	4	

gave	my	students	an	 in-class	assignment	of	 reading	and	 interpreting	a	 specific	GoF	pattern.	They	worked	 in	
small	teams	reading,	and	then	discussing	their	assigned	pattern.	I	asked	that	they	relate	it	to	their	own	work	
experience,	and	then	share	and	teach	the	pattern	to	the	rest	of	the	class.	Once	they	saw	that	I	really	did	want	
them	to	critique	both	the	writing	and	the	pattern’s	solution,	and	that	it	was	OK	to	be	frustrated	by	a	pattern,	
they	really	got	into	the	exercise.	Some	shared	alternative	solutions	they	had	seen	or	implemented.	They	came	
to	 realize	 that	 patterns	 don’t	 present	 every	 plausible	 solution	 to	 a	 problem;	 only	 those	 solutions	 deemed	
reasonable	given	the	pattern	authors’	experiences.	 	My	students	might	not	have	learned	all	 the	GoF	patterns,	
but	 they	 gained	 an	 appreciation	 for	 how	 to	 approach,	 engage	 with,	 and	 comprehend	 detailed	 pattern	
descriptions.	

2.2 A	pattern	may	contradict	or	compete	with	other	patterns	
My	goal	as	a	software	designer	is	to	come	up	with	practical	solutions.	This	is	a	rough,	uneven	process.	I	wish	it	
were	more	systematic	and	easily	explained;	but	it	is	not.	I	don’t	start	right	away	sorting	through	patterns	and	
pattern	collections	 for	potential	solutions.	 Instead,	 I’ll	 take	a	 look	 into	various	 technologies,	 frameworks	and	
platforms,	and	current	industry	trends	(which	are	rarely	described	as	patterns).	More	likely,	unless	I	am	a	solo	
designer,	others	have	previously	made	technology	choices	that	already	constrain	my	software	design	solutions.	

That	said,	when	it	comes	to	choosing	high-level	ways	of	structuring	my	software,	I	do	have	in	mind	many	
higher-level	 structuring	 patterns.	 I	 consider	 these	 along	 with	 general	 rules-of-thumb,	 guidelines,	 or	
preferences	I	have	accumulated	over	30	years	of	making	design	choices.	I	am	fully	aware	of	several	competing	
alternatives.		

Let’s	 look	 at	 a	 high-level	 architectural	 structuring	 example	 to	 illustrate	 my	 thinking.	 Although	 this	
architectural	style	 is	somewhat	dated,	 it	 is	still	a	useful	example.	 In	Patterns	of	Enterprise	Application	Design	
[Fowl02],	Fowler	identifies	alternative	patterns	for	structuring	domain	logic	in	a	business	application:		

• A	Transaction	Script	organizes	business	logic	for	a	single	business	transaction	into	a	procedure,	which	
makes	calls	directly	to	the	database	or	through	a	thin	database	wrapper.		

• A	Table	Module	 organizes	 domain	 logic	 quite	 differently,	 into	 one	 class	 per	 database	 table.	 A	 single	
instance	of	a	class	contains	functions	that	operate	on	elements	in	the	table.		

• A	Domain	Model	organizes	business	 logic	 into	domain	entities,	value	objects	and	services,	each	object	
representing	some	meaningful	domain	concept	or	behavior.		

With	 both	 the	 Domain	 Model	 or	 Table	 Module	 approach,	 a	 Service	 Layer	 provides	 access	 to	 business	
functionality,	controls	transactions,	and	coordinates	responses	to/from	either	domain	or	table	module	objects	
(See	Figure	1).	

	
	

Figure	1.	Three	patterns	for	structuring	enterprise	applications:	a.	Transcription	Script,	Domain	Model,	and	Table	Module.	

transac'on	
scripts	

database	

a.	Transac'on	
Script	Pa3ern	

database	

Service	Layer	
(business	service		
objects)	

Domain	Model	
(en'ty,	value,	
service	objects)	

object	to	
database	
mapper	

c.	Domain	
Model	Pa3ern	

Service	Layer	
(business	service	
objects)	

Table	Module	
(database	
table	objects)	

database	

b.	Table	Module	
Pa3ern	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	5	

	
In	the	case	of	the	Transaction	Script,	there	is	no	concerted	design	effort	to	separate	behaviors	into	distinct	

objects	 or	 to	 create	 an	 object	model	 of	 the	domain.	With	 a	Table	Module	 solution,	 a	 designer	doesn’t	worry	
about	finding	domain	abstractions,	per	se,	but	acknowledges	that	the	database	schema	design	is	best	used	as	is.	
Typically,	 frameworks	provide	mechanisms	 for	 specifying	 classes	which	 represent	 either	 an	 entire	database	
table	or	projections	(views)	onto	the	database.		

In	 the	 Domain	 Model,	 manipulation	 of	 data	 takes	 place	 by	 “model”	 objects	 designed	 to	 interact	 to	
accomplish	work	and	to	store	and	retrieve	data.	A	single	class	represents	a	single	instance	of	a	domain	entity,	
which	 if	persistent,	 is	 retrieved	and	stored	 in	a	database.	Low-level	database	details	 can	be	 “hidden”	 from	a	
more	abstract	view	of	 that	 information	embodied	 in	domain	objects	(which	comes	with	both	design	benefits	
and	drawbacks).	Furthermore,	there	is	another	choice;	where	to	locate	complex	domain	behaviors:	

• In	 an	anemic	domain	model,	 complex	 logic	 is	 located	 outside	 of	 domain	 entities;	 domain	 entities	 are	
designed	primarily	to	be	cohesive	containers	of	data.		

• In	a	rich	domain	model,	business	logic	is	considered	intrinsic	to	the	domain	and	is	consequently	located	
either	in	domain	entities	or	as	separate	domain-related	service	objects.	

Because	 I’ve	 seen	 so	 many	 workable	 solutions,	 I	 hesitate	 to	 say	 any	 one	 is	 “best.”	 Still,	 some	 are	
aesthetically	more	pleasing	to	me.		

Even	 though	 I	 know	of	 different	ways	 of	 structuring	 an	 enterprise	 application,	 I	 have	my	 own	 style	 and	
distinct	preferences	because	of	my	background,	 that	 is,	 the	collected	set	of	heuristics	and	experiences	 I	have	
assimilated.	 I	 have	 built	 up	 a	 toolkit	 of	 heuristics,	 both	 consciously	 and	 unconsciously,	 for	 structuring	
enterprise	applications	through	writing	code,	reviewing	others’	code	and	designs,	using	various	frameworks,	
learning	about	object	modeling	and	analysis	in	general,	and	becoming	familiar	with	many	patterns.	

Coming	 from	 a	 Smalltalk	 programming	 background,	 where	 everything	 is	 an	 object,	 I	 view	 interacting	
networks	of	objects	as	good,	workable	ways	of	structuring	many	design	solutions.	Because	of	my	object	design	
roots	 and	 invention	 of	 the	Responsibility-Driven	Design	method	 [Wirf90,	Wirf02],	 I	 know	 that	 any	 object	 is	
capable	of	both	knowing	and	doing	things.		

I’m	primed	 to	prefer	Domain	Models	 to	Table	Modules	 or	Transaction	Scripts,	 and	 rich	domain	models	 to	
anemic	ones.	

In	 fact,	when	 seeking	 solutions	 to	 an	 enterprise	 application	 design,	 I	may	only	 see	 as	 viable	 options	 the	
choice	between	how	rich	or	anemic	my	Domain	Model	should	be.	I	quickly	discount	the	Table	Module	approach	
because	I	view	it	as	overly	constraining	my	software	objects’	designs	to	align	with	the	database	schema.		

And	I	wouldn’t	consider	a	transaction	scripting	approach	to	construct	complex	enterprise	systems	because	
it	 quickly	 becomes	unmanageable.	And	 I	 am	happy	 to	 also	 discard	 it	 as	 a	 viable	 solution	 for	 even	 relatively	
small	applications.	

	

	
	

Figure	2.	Transaction	Scripts	and	Table	Modules	fade	from	my	consideration	because		of	my	preference	for	Domain	Model	solutions	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	6	

Yet	given	the	above	descriptions,	it	is	clear	that	the	Domain	Model	pattern	contains	more	discrete	blocks	of	
functionality	 than	 the	 transaction	 script.	 So	 arguably,	 it	 appears	 like	 a	more	 complex	 solution.	 So	what	 are	
justifiable	reasons	for	introducing	this	additional	complexity	into	my	design?	

I	prefer	domain	models	because	I	have	found	them	to	be	useful	in	many	contexts	and	am	comfortable	with	
that	style.	Domain	models	are	easy	 for	me	to	 invent.	That	doesn’t	mean	I	won’t	ever	solve	a	design	problem	
using	a	Transaction	Script...it	just	isn’t	the	first	or	second	or	third	heuristic	that	comes	to	mind.	It	simply	fades	
from	my	solution	search	space,	because	my	positive	experiences	with	other	approaches	are	so	much	stronger.	I	
find	myself	prefering	a	Domain	Model	solution	over	a	Table	Module	in	many	situations	because	I	don’t	want	to	
have	my	application	behaviors	coupled	and	constrained	to	work	awkwardly	with	an	existing	database	schema,	
which	is	likely	not	well-matched	to	my	application’s	desired	behavior.	I	accept	the	complexities	of	an	object-to-
database	mapper	in	order	to	remove	this	design	constraint.	

2.3 A	Pattern,	Pattern	Collection,	or	Pattern	Language	Reduces	the	Solution	Search	Time	
It	 is	 only	 at	 the	beginning	of	 a	design	project	do	 I	use	domain	model	or	 table	module	or	 transaction	 scripts	
because	 they	 establish	 the	 overall	 high-level	 structure	 of	 my	 design	 solution.	 And	 then,	 the	 ongoing	 more	
detailed	 design	 work	 begins.	 Knowing	 large-grained	 application-structuring	 patterns	 is	 also	 useful	 for	
characterizing	existing	designs.	What	is	most	important	for	solving	day-to-day	design	problems	is	knowledge	
of	 a	 wide	 variety	 of	 lower	 level,	 more	 detailed	 patterns	 along	 with	 both	 general	 and	 more	 specific	 design	
heuristics.		

And	yet,	I	have	different	degrees	of	familiarity	with	lower-level	patterns.	
I	 remember	 each	 GoF	 pattern	 because	 they	 were	 among	 the	 first	 software	 patterns.	 I	 reviewed	 a	 pre-

publication	version	of	 their	book.	 I	 really	 studied	 those	patterns.	New	and	entirely	novel,	 they	were	burned	
into	my	brain.	The	authors	organized	23	patterns	into	three	categories:	Creational,	Structural,	and	Behavioral.	
Perhaps,	 for	 some,	 this	 organization	 helped	 reduce	 search	 time.	 But	 given	 that	 I	 think	 of	 objects	 as	
encapsulating	both	data	and	behavior…well,	those	categories	haven’t	proven	useful	to	distinguish	between	the	
various	patterns.	Consequently,	I	largely	ignore	these	categories.	Adapters,	Bridges,	Facades	enable	integration	
and	 encapsulation	 of	 disparate	 parts	 of	 systems.	 Are	 they	 structural	 or	 behavioral	 patterns?	 Since	 they	
organize	parts	of	the	system,	I’m	guessing	they	are	structural.	But	I’m	not	sure	unless	I	double	check.	Ah,	yes,	
they	are.	Good.	So	what?	

Factories	 allow	 me	 to	 create	 objects	 indirectly,	 reducing	 the	 dependency	 on	 specific	 class	 names.	 Ah,	
obviously	a	creational	pattern.	

Strategies,	 State	 and	 Visitor	 patterns	 define	 classes	 that	 perform	 variable	 actions.	 Certainly	 these	 are	
behavioral	patterns.	But	every	object	is	capable	of	having	behavior.	

Mementos	 allow	 me	 to	 store	 and	 retrieve	 objects	 without	 breaking	 encapsulation.	 Seems	 like	 both	
behavioral	and	structural	objects	to	me.	But	that	cannot	be.	A	pattern,	in	this	collection	at	least,	fits	into	only	
one	category.	

As	a	co-author	of	a	recent	patterns	collection	[Yode14a,	Yode14b,	Yode14c,	Yode15,	Yode16a,	Yode16b]	I	
recollect	 spending	 time	 trying	 to	 identify	 relevant	 categories	 with	 my	 co-authors,	 at	 the	 prompting	 of	 our	
shepherds	 and	 writing	 workshop	 members.	 As	 it	 was,	 we	 discovered	 through	 short	 activities	 at	 various	
patterns	conferences	and	workshops,	 that	our	pattern	readers	were	cleverer	at	organizing	our	patterns	than	
we	were.	Not	surprisingly,	there	are	several	equally	valid	categorizations.	

Pattern	authors	may	think	they	need	to	place	individual	patterns	into	distinct	categories	so	as	to	reduce	a	
designer’s	 cognitive	 load	 (and	perhaps	 their	 solution	 search	 time).	 	But	 I’m	not	 so	 sure	 about	 this.	Perhaps,	
instead	of	categorizing	our	patterns	we	should	characterize,	that	is,	tag	them	with	multiple	characteristics,	and	
let	these	characterizations	emerge	as	we	build	our	collections	and	share	them	with	others.		

I	recently	listened	to	Ralph	Johnson’s	2014	SugarLoaf	PLoP	keynote	on	Twenty	Years	of	Software	Patterns	
(https://www.youtube.com/watch?v=ALxQdnOdYXQ).	 In	 this	 talk,	 Johnson	proposed	a	more	effective	way	of	
categorizing	 the	GoF	patterns	(core,	creational,	and	peripheral)	and	shared	 that	at	 the	 time	 they	wrote	 their	
book,	they	found	the	categories	to	be	rather	dubious,	but	went	with	them	for	lack	of	any	better	scheme.	Aha!	
My	hunch	about	these	categories	was	finally	confirmed.	

In	 his	 talk,	 Johnson	 also	 introduced	 additional	 patterns	 that	 he	 felt	 were	 fundamental	 to	 good	 object-
oriented	programs,	but	were	missing	in	their	initial	work.	This	included,	among	others,	Value	Object	and	Null	
Object,	 and	 Dependency	 Injection.	 I’ve	 known	 these	 patterns	 for	 a	 while	 (having	 learned	 about	 them	 from	
other	authors	and	actually	applying	them).	And	because	I	have	used	them,	it	doesn’t	matter	to	me	whether	they	
are	part	of	any	particular	collection.	They	are	still	part	of	my	heuristic	toolkit.		

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	7	

Richard	 Gabriel	 likens	 a	 patterns	 collection	 to	 a	 parts	 store.	 If	 you	 are	 looking	 for	 a	 particular	 software	
heuristic	 to	apply,	you	go	 to	 the	aisle	where	all	 those	kinds	of	parts	are.	The	size	of	a	pattern	collection	 is	a	
factor	 in	 my	 remembering	 it,	 as	 well	 as	 the	 granularity	 of	 the	 individual	 patterns,	 how	 “closely”	 they	 are	
related,	 and	how	closely	 they	match	my	 current	problem.	Knowing	what	 the	 general	 shape	of	what	 you	are	
searching	 for	 is	one	 thing;	knowing	 that	 there	are	always	 “gaps”	 in	 any	written	pattern	 collection	 is	 equally	
important.	And	then?	You	unconsciously	fill	those	gaps	with	things	you’ve	learned	from	experience.	

Johnson	 also	 discussed	 common	 misuses	 and/or	 misimpressions	 of	 some	 “dangerous”	 patterns	 (most	
notably	 Singleton	 and	 Composite).	 In	 response	 to	 a	 question	 about	missing	 gaps	 in	 the	 creational	 patterns,	
Johnson	 gave	 a	 clear	 explanation	 of	 the	 nuances	 of	 several	 (as	 yet	 undocumented)	 creational	 patterns	 and	
hinted	at	how	they	might	be	organized.	Authors	only	write	patterns	for	what	they	know.	Pattern	authors	can’t	
anticipate	what	future	designers	encounter.	Not	only	are	patterns	potentially	fallible,	patterns	collections	are	
incomplete.	And,	to	stay	relevant,	they	need	refreshing,	based	on	current	experience	and	practices.	

I	expect	to	fill	gaps	in	any	particular	patterns	collection	with	my	own	experiences.	Over	time,	I	have	learned	
how	to	knit	together	and	reconcile	patterns	from	diverse	sources.	As	I	design,	I	additionally	apply	both	general	
and	specific	design	heuristics	to	guide	me	whether	or	not	they	are	written	as	patterns.		

The	 more	 patterns	 and	 pattern	 collections	 there	 are,	 and	 the	 more	 disjointed	 they	 are,	 the	 harder	 it	
becomes	 to	 locate	 just	 what	 I	 need.	 Even	 more	 daunting	 is	 the	 task	 of	 searching	 through	 multiple,	 partly	
overlapping	 collections,	 seeking	what	might	be	 the	next	best	design	heuristic	 to	 apply.	 I	 don’t	have	a	handy	
browser	or	tool	that	aids	my	search.		

Consequently,	I	need	to	have	mentally	organized	and	loosely	arranged	the	patterns	collections	I	do	know	of	
so	 that	 I	 can	 call	 them	 to	mind,	when	need	be.	 I	 trust	my	 instincts	 and	pay	attention	 to	what	 aspects	of	my	
design	emerge	as	important	to	me	as	I	go.		

I	don’t	remember	many	patterns	collections	in	their	entirety.		
With	 later	patterns	collections	I	encountered,	 I	 tended	to	 learn	of	 them	in	general	 lumps	(not	necessarily	

remembering	each	 individual	pattern,	but	 instead	 trying	 to	understand	 the	general	design	principles	behind	
them	and	the	gist	of	their	concerns).		

For	 example,	 Fowler’s	Analysis	 Patterns	 [Fowl96]	 are	 a	 loosely	 related	 collection	 heuristics	 for	modeling	
various	 aspects	 of	 specific	 domains	 that	 Fowler	 collected	 over	 a	 period	 of	 time.	 With	 50	 patterns	 in	 that	
collection,	I	have	to	search	it	carefully	(actually	search,	because	I	haven’t	committed	each	pattern	to	memory)	
to	find	whether	any	particular	pattern	fits	my	needs.	

All	pattern	collections	have	gaps	and	warts	and	differences	in	pattern	granularities	as	well	as	more	or	less	
useful	 patterns.	 Because	 I	 have	 assimilated	many	 such	 collections,	 these	 inconsistencies	 don’t	 trip	me	 up.	 I	
suspect	a	less	experienced	designer	might	have	a	great	deal	more	difficulty.	

For	 example,	 I	 pretty	much	discount	 the	GoF	Singleton,	 Flyweight,	 and	 Iterator	patterns.	 I	 know	of	 them	
because	 those	 first	23	patterns	have	been	 indelibly	burned	 into	my	memory.	They	are	 there	at	 ready	 recall,	
even	though	I	have	never	used	them	to	solve	any	design	problem	(perhaps	this	mental	clutter	leaves	less	room	
in	my	brain	to	distinguish	new	patterns	I	might	shove	in	there).		

But	many	times	I	don’t	need	to	use	GoF	patterns	at	all...I	simply	make	design	choices	about	what	behaviors	
and	data	to	package	together.		And	to	do	so,	I	fall	back	on	my	personal	set	of	design	heuristics	for	encapsulating	
variability	and	supporting	design	flexibility.	

A	few	have	been	written	as	patterns;	most	have	not.	But	I	have	written	and	spoken	to	others	about	most	of	
them.	Using	Responsibility-Driven	Design	principles,	heuristics,	and	design	characterizations	 I	can	 figure	out	
how	 to	 tackle	 new	 design	 problems	 as	well	 as	 decipher	 existing	 designs.	 For	 example,	 from	Responsibility-
Driven	Design	[Wirf02]	I	use	these	basic	role	stereotypes	to	characterize	objects:	

	
Information	holders—that	know	and	provide	information.	
Structurers—that	maintain	relationships	between	objects.	
Service	providers—that	performs	work	on	demand.	
Coordinators—that	react	to	events	by	delegating	to	others.			
Controllers—which	make	decisions	&	direct	actions.	
Interfacers—which	transform	information	and	requests	between	distinct	parts	of	a	software	system.	
	
These	characterizations	help	me	understand	more	deeply	the	roles	of	design	elements	that	are	part	of	my	

current	 design	 as	well	 as	 those	 classes	 or	 objects	described	by	 any	 software	design	pattern.	Along	with	 the	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	8	

Responsibility-Driven	 Design	 heuristic,	 “Make	 objects	 smarter	 by	 blending	 stereotypes”	 they	 allow	 me	 to	
construct:	

• information	holders	that	compute	or	derive	information	based	on	other	information	they	maintain;	
• service	providers	that	maintain	information	to	be	more	efficient;	
• structurers	that	answer	deeper	questions	or	derive	facts	about	what	they	are	structuring;	and		
• interfacers	that	also	transform;	

without	having	to	search	for	any	specific	pattern	to	apply.	I	apply	object	role	characterizations,	along	with	the	
knowledge	of	various	heuristics	and	design	tradeoffs,	to	guide	how	I	structure	groups	of	collaborating	objects	
(I	also	characterize	control	styles,	identify	trust	regions,	and	am	familiar	with	different	error	recovery	and	fault	
handling	 strategies).	 All	 these	 design	 characterizations	 and	 heuristics	 are	 part	 of	 my	 working	 design	
vocabulary	and	ways	of	thinking	about	a	design.	

Heuristics	and	patterns	and	ways	of	seeing	and	understanding	the	design	space	are	passed	along	to	others	
by	 implementation	examples,	books,	writing,	 teaching,	 and	word	of	mouth.	 If	 someone	doesn’t	 spread	 them,	
keep	them	relevant,	and	promote	them,	they	will	fade	from	fashion	(not	because	they	aren’t	useful,	but	because	
they	become	less	known).	

From	 Streamlined	 Object	Modeling:	 Patterns,	 Rules,	 and	 Implementation2	 [Nico],	which	 is	 not	well-known	
today,	 I	 learned	 the	 useful	 distinction	 between	 descriptive,	 time-dependent,	 lifecycle	 state,	 and	 operational	
state	attributes),	which	broadly	is	useful	in	domain	modeling	as	I	apply	this	heuristic:		

	
Heuristic:	Characterize	a	domain	entity’s	attributes	to	understand/find/identify	needed	system	behaviors.	
	
Because	 I	 know	 of	 Streamlined	 Object	 Modeling	 attribute	 characterizations,	 I	 can	 identify	 and	 better	

understand	design	domain	behaviors	in	an	emerging	domain	model	as	I	apply	Domain-Driven	Design	patterns	
[Evans].	

In	 Streamlined	 Object	 Modeling	 there	 are	 patterns	 for	modeling	 people,	 places	 and	 things,	 which	 I	 have	
boiled	down	to	three	simple	heuristics	shown	as	shown	in	Figure	3.		

	

	
	

Figure	3:	Patterns	for	People,	Places,	and	Events	restated	as	simple	heuristics	

Knowing	the	 interconnections	and	linkages,	whether	stated	or	not,	between	various	pattern	collections	 is	
equally	 important.	 The	 details	 of	 the	 patterns	 in	 these	 two	 particular	 catalogs	 don’t	 seem	 as	 important	 to	
remember	as	does	the	formulations	of	more	fundamental	heuristics	for	structuring	and	characterizing	entities	
and	 relationships	 between	 them.	 If	 I	 distill	 the	 essence	 of	 several	 patterns	 into	 higher-level,	 more	 abstract	
heuristics	it	reduces	my	mental	clutter	and	seems	to	enrich	the	quality	of	my	design	thinking.	

2 Rules as meant in the title of this book are roughly equivalent in meaning to Vaughn Koen’s definition of heuristics.

2001

People, Places, Things,
Aggregate Things, Events

Heuristic: Separate out the stuff that
varies depending on the current
relationship

Heuristic:
Locations can be
hierarchical or even
more complex

Heuristic: Events can be point-in-time,
interval, depend on other events
…and event information is often messy
and complex

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	9	

2.4 The	acceptance	(or	applicability)	of	a	pattern	depends	on	the	immediate	context	instead	of	an	absolute	
standard	

Software	patterns	that	describe	their	context	for	use	that	I	can	also	quickly	match	with	my	own	needs,	offer	an	
advantage	 over	 those	 that	 either	 leave	 out	 or	 make	 assumptions	 about	 the	 context.	 Often	 confounding	 to	
pattern	newcomers	is	the	fact	that	their	solutions	to	real-world	problems	are	always	more	complex	than	the	
stylized	ones	written	about	in	any	particular	software	pattern.	

I	 have	 used	 and	 extended	 several	 patterns	 from	 different	 collections	 on	 more	 than	 one	 occasion.	 I	
remember	 feeling	 pleased	 to	 find	 that	 my	 solutions	 were	 more	 complex	 and	 nuanced	 than	 the	 patterns	
described	in	these	books	and	that	I	had	found	a	clever	way	to	extend	and	augment	those	patterns.	(A	solution	
that	 I	 worked	 on	 that	 represented	 complex	 roles	 and	 privileges	 for	 individuals	 belonging	 to	 multiple	
organizational	structures	far	exceeded	the	simple	relationships	in	the	Accountability	and	Accounting	patterns	
described	 in	 Fowler’s	 Analysis	 Patterns).	 But	 I	 also	 remember	 the	 discomfort	 of	 my	 less	 pattern	 savvy	
colleagues	who	felt	that	they	hadn’t	“gotten”	a	pattern	correctly	if	we	needed	to	refine	or	extend	it.	Only	after	
reviewing	our	solutions	with	Martin	Fowler	and	passing	along	to	my	colleagues	confirmation	that	 indeed,	he	
thought	our	problem	seemed	to	warrant	a	more	complex	solution,	did	they	feel	comfortable	with	our	design.		

Gigerenzer,	in	Simple	Heuristics	that	Make	us	Smart	[Gig],	says	that	useful	simple	heuristics	apply	to	specific	
environments	 and	 tasks,	 but	 do	 not	 contain	 enough	 detail	 to	 match	 any	 one	 environment	 precisely.	 While	
patterns	 contain	 more	 information	 and	 specifics	 than	 most	 of	 the	 fast-and-frugal	 heuristics	 described	 by	
Gigerenzer,	this	seems	like	an	ideal	tactic	that	pattern	authors	should	ascribe	to.	The	goal	of	our	writing	should	
be	to	neither	over-	or	under-	specify	the	patterns’	context	and	forces	that	must	be	balanced.	Software	patterns	
that	don’t	provide	much	context,	or	offer	too	broad	or	too	narrow	a	context,	can	be	difficult	to	learn	and	apply.	
In	what	context	are	GOF	patterns	useful?	The	authors	claim	that	their	design	patterns	were	useful	for	designing	
object-oriented	 systems	 intended	 to	 be	 reusable	 and	 extensible.	 Some	 argue	 that	 several	 patterns	 in	 the	
collection	have	narrow	scope	and	limited	use.	Singleton	and	Iterator	are	notable	for	being	held	in	disregard.	

But	 the	notion	of	 a	Façade	or	 an	Adapter	 is	 a	useful	 construct,	 regardless	of	 implementation	 technology.	
What	is	missing	from	this	specific	object-oriented	pattern	collection	is	the	more	general	heuristic:	encapsulate	
what	you	don’t	want	to	expose	to	the	rest	of	the	system.		

Limiting	GoF	patterns’	utility	to	only	an	object-oriented	programming	solution	is,	indeed,	limiting.	
Expanding	on	them	so	they	can	be	applied	more	generally	is	something	I’ve	done,	over	time,	as	I’ve	built	up	

my	design	repertoire.	I’ve	broadened	their	context	through	experience.	
In	the	Pattern-Oriented	Software	Architecture	collection	[Busc],	a	context	section	follows	immediately	after	

the	pattern	summary	and	a	 short	example.	 In	 it,	 the	Command	Processor	Pattern	 separates	 the	 request	 for	a	
service	from	its	execution.	It	has	this	context:	“Applications	that	need	flexible	and	extensible	user	interfaces,	or	
applications	that	provide	services	related	to	the	execution	of	user	functions,	such	as	scheduling	or	undo.”	

As	I	was	writing	this	essay,	I	was	struck	by	how	dated	that	context	seemed.	
Encapsulated	actions,	or	services	that	can	be	invoked,	are	useful	in	much	broader	contexts	than	user-

system	interactions.	These	days	is	a	commonly	accepted	software	design	practice	to	separate	requests	from	
their	execution,	regardless	of	whether	there	is	the	need	to	undo	or	redo	an	action.	And	more	recently,	the	
Command	pattern	has	become	part	of	the	CQRS	Command-Query-Responsibility-Segregation	pattern	
[https://martinfowler.com/bliki/CQRS.html].	

Not	only	does	the	applicability	of	a	pattern	rely	on	the	immediate	problem’s	context,	but,	as	our	software	
design	 experiences	 evolve,	 the	 appropriate	 context	 for	 any	 particular	 pattern	 might	 also	 reasonably	 be	
expected	 to	 shift,	 expand,	or	contract.	We	software	designers	are	clever	problem	solvers.	We	 take	 ideas	and	
adapt	them	as	we	see	fit.	Our	solutions	embody	patterns	or	ideas	based	on	written	patterns,	even	if	we	do	not	
know	or	remember	their	names.	

3. SOME	CHALLENGES	WITH	SOFTWARE	PATTERNS	AND	DESIGN	HEURISTICS	

However,	 if	we	want	 to	keep	written	 software	patterns	alive	and	 relevant,	 there	 is	 an	urgent	need	 for	us	 to	
broaden,	 refine,	 and	 refresh	 existing	 patterns’	 contexts	 and	 their	 applicability.	We	 also	 need	 to	 distinguish	
between	 more	 general	 design	 heuristics,	 larger	 grained	 software	 patterns	 for	 structuring	 systems,	 finer-
grained,	more	specialized	patterns,	patterns	 for	specialized	 implementations	and	architectures,	and	patterns	
that	are	more	or	less	useful.	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	10	

3.1 Too	many	heuristics	are	overwhelming	
In	 1997,	 Arthur	 Riel	 published	 Object-Oriented	 Design	 Heuristics	 [Riel],	 an	 exposition	 of	 60	 heuristics	 for	
designing	 object-oriented	 software.	 The	 heuristics	 in	 his	 collection	 were	 organized	 into	 these	 categories:	
classes	and	objects,	the	topology	of	classes,	the	relationship	between	classes	and	objects,	inheritance	(as	well	
as	multiple	 inheritance),	and	associations.	Each	heuristics	was	codified	 in	a	single	sentence	and	explained	 in	
more	detail.	 I	 didn’t	 recall	Riel’s	work	until	 I	 revised	 this	 paper.	As	 I	 skimmed	his	 book,	 once	 again	 I	 found	
myself	vigorously	arguing	against	several	of	his	heuristics,	looking	to	take	exception.	

The	 very	 first	 class	 heuristic	 (Heuristic	 2.1)	 is,	 “All	 data	 should	 be	 hidden	 within	 its	 class.”	 No	 public	
variables.	 Another	 heuristic	 (Heuristic	 3.2):	 “Do	 not	 create	 god	 classes/objects	 in	 your	 system.	 Be	 very	
suspicious	of	a	class	whose	name	contains	Driver,	Manager,	System,	or	Subsystem.”	

I	don’t	respond	well	to	absolutes.	
I	remember	challenging	myself	when	I	first	read	his	book	to	restate	some	of	though	heuristics	in	ways	that	I	

could	 find	more	 palatable.	 Some	 I	 simply	 couldn’t	 reconcile	 with	my	 existing	 design	 practices,	 so	 I	 quickly	
discounted	them.	Some	were	too	vague	to	be	useful.	A	heuristic	should	guide	us	to	make	a	decision	and	then	
take	 action.	 But	 what	 concrete	 action	 could	 I	 take	 with	 Heuristic	 3.7,	 “Eliminate	 irrelevant	 classes	 in	 your	
design?”	And	I	wasn’t	certain	about	the	practicality	of	Heuristic	4.6,	either:	“Most	of	the	methods	defined	on	a	
class	 should	 be	 using	 most	 of	 the	 data	 members	 most	 of	 the	 time.”	 Based	 on	 my	 experience,	 I	 found	 that	
different	behaviors	relied	on	different	data	encapsulated	within	an	object.	So	it	seemed	quite	reasonable	to	me	
that	some	methods	would	use	certain	data	members,	while	other	methods	would	use	other	subsets	of	the	data	
members.	What	are	some	reasonable	exceptions	to	this	“generalized”	data	member	access	heuristic?	What	was	
the	point	of	trying	to	enforce	the	heuristic	that	most	of	the	data	members	should	be	used	most	of	the	time?	Was	
it	to	tease	out	behaviors	that	belonged	in	different	objects?	If	so,	there	certainly	are	better	ways	of	expressing	
rules-of-thumb	for	refactoring	objects	and	behaviors.		

Chapter	5	of	Riel’s	book	has	a	collection	of	19	heuristics	for	Inheritance.	I	thought	he	started	out	reasonably	
with	Heuristic	 5.1,	 “Inheritance	 should	 be	 used	 only	 to	model	 a	 specialization	 hierarchy”	 and	Heuristic	 5.2,	
“Derived	 classes	 must	 have	 knowledge	 of	 their	 base	 class	 by	 definition,	 but	 base	 classes	 should	 not	 know	
anything	about	their	derived	classes.”	But	then,	it	seemed	he	quickly	got	into	more	controversial	territory	with	
these:	

	
Heuristic	5.3	All	data	in	a	base	class	should	be	private;	do	not	use	protected	data.	
Heuristic	5.4	In	theory	inheritance	hierarchies	should	be	deep—the	deeper,	the	better	
Heuristic	5.5	In	practice,	inheritance	hierarchies	should	be	no	deeper	than	an	average	person	can	keep	in	
his	or	her	short-term	memory.	A	popular	value	for	this	depth	is	six.	
	
I	could	go	into	detail	about	the	many	problems	I	have	accepting	those	three	heuristics.	But	I	won’t	except	to	

state	that	heuristics	that	contain	magic	numbers	related	to	short	term-memory	size	and	absolutes	interspersed	
with	“shoulds”	cause	me	to	fight	against	instead	of	seeking	to	understand	the	reasoning	behind	them.		

At	the	time,	Riel’s	heuristics	considered	en	masse	seemed	far	too	much	work	to	sort	out	and	reconcile	with	
my	own	design	practices.	That	is	one	reason	I	suspect	why	I	didn’t	remember	them.	

Still,	 that	 book	 contains	 some	 heuristics	 I	 think	 are	 reasonable.	 Heuristics	 that	 have	 stood	 up	 over	 time	
which	others	have	been	echoed	and	refined.	One	example,	Heuristic	2.8:	“A	class	should	capture	one	and	only	
one	 key	 abstraction,”	 is	 similar	 to	 the	 Single	 Responsibility	 Principle	 popularized	 by	 Robert	 Martin	 [Mart].	
However,	 once	 again,	 I	 have	 found	 that	 Single	 Responsibility	 Principle	 to	 be	 commonly	 misinterpreted	 by	
students	of	object	design	to	mean,	“a	class	should	only	have	a	single	method”	instead	of	a	class	should	have	a	
singular	or	cohesive	purpose.	

Software	pattern	or	design	heuristic	collections	need	to	be	mostly	useful	and	at	the	right	conceptual	level,	
or	they	will	be	easily	forgotten.	Heuristics,	without	accompanying	explanation	and	context,	which	fortunately	
most	 pattern	 descriptions	 provide,	 are	 open	 to	 misinterpretation.	 Heuristics	 boiled	 down	 to	 simple	 pithy	
phrases	 might	 be	 good	 reminders,	 but	 only	 if	 you	 understand	 the	 reasoning	 behind	 those	 phrases.	 That’s	
where	patterns	offer	a	distinct	advantage.	They	 include	enough	details,	 context,	 and	solution	 for	you	 to	sink	
your	teeth	into.	

Learning	too	many	heuristics	(especially	contradictory	ones),	without	seeing	workable,	concrete	examples	
or	 having	 varied	 experiences	 applying	 them,	 isn’t	 helpful	 either.	 I	 only	 became	 proficient	 at	 object	 design	
through	a	combination	of	practice,	learning	about	patterns	and	patterns	collections,	being	around	people	who	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	11	

were	a	lot	much	more	clever	than	I	am,	as	well	having	a	propensity	for	distilling	specific	heuristics,	phrasing	
them	in	my	own	words,	and	making	my	own	observations	on	what	seemed	to	work.	

But	learning	software	design	patterns	isn’t	enough	to	become	a	good	designer.	Sure,	we	need	heuristics	that	
can	be	broadly	applied	to	construct	workable	design	solutions.	But	we	also	need	heuristics	for	comprehending	
the	fundamental	structures	and	behaviors	in	others’	code	as	well.	And	we	need	heuristics	for	knowing	what’s	
important	about	our	current	design.	And	then,	we	need	to	know	heuristics	for	understanding	how	to	move	to	
our	design	forward.		

3.2 We	don’t	know	how	designs	actually	evolve	
Riel’s	 book	 contained	 a	 tantalizing	 chapter	 on	 his	 view	 on	 the	 relationship	 between	 software	 patterns	 and	
design	heuristics.	Riel	thought	his	heuristics	were	“a	gateway	through	which	a	designer	can	move	from	a	bad	
design	pattern	[e.g.	a	pattern	that	had	been	applied	that	didn’t	improve	the	design]	to	a	good	design	pattern.”	
Riel	 postulated	 that	 his	 style	 of	 heuristics	 could	 lead	 designers	 to	 consider	 making	 design	 changes	 that	
involved	applying	patterns,	whether	or	not	these	patterns	had	yet	been	discovered.	Although	he	gave	a	couple	
of	 simple	 examples,	 he	 left	 the	 exercise	 of	 generating	more	 transformation	 pattern	 sequences	 (e.g.	 current	
design->	applied	heuristic->	new	pattern	applied	to	 improve	the	design)	as	a	 future	research	topic.	 	Many	of	
the	Riel’s	heuristics	are	about	detailed	implementation	concerns,	for	example	the	proper	use	of	class	variables	
instead	of	globals,	or	not	overriding	inherited	methods	with	no-ops.	Because	these	heuristics	are	more	about	
stylized	 use	 of	 object-oriented	programming	 language	 capabilities,	 I	 suspect	 it	would	 be	 not	 very	 fruitful	 to	
hunt	for	the	patterns	found	when	“fixing”	the	design	to	conform	to	them.	

In	Refactoring	to	Patterns	[Ker],	 Joshua	Kerievsky,	explores	the	motivations	and	reasons	for	a	designer	to	
move	toward	as	well	as	away	from	the	twenty-three	basic	GoF	patterns	during	implementation.	I	liked	reading	
Kerievsky’s	book	because	it	got	me	inside	his	head	as	a	designer.	And	yet,	in	his	steps	toward	and	away	from	
“pure”	implementation	of	patterns	as	originally	sketched	out	by	the	GoF	authors	seemed	to	simply	be	realistic	
examples	of	how	a	designer	adapts	any	pattern	to	their	particular	context.	

When	 I	 design,	 I	 start	 with	 initial	 design	 ideas	 and	 then	 move	 in	 uneven	 steps	 to	 a	 more	 nuanced	
understanding	 of	what	 aspects	 of	my	 emerging	 solution	 are	 important.	 I	 don’t	move	 towards	 or	 away	 from	
specific	design	patterns.	Instead,	I	move	between	general	and	more	specific	design	heuristics	as	my	design	and	
implementation	unfolds.		It	is	only	when	there	is	some	tension	or	nagging	uncertainty	or	when	I	move	into	an	
unfamiliar	area	of	design	 that	 I	 search	 for	a	handy	pattern	 to	apply.	And	 then	 I	 continue	on	until	 I	bump	up	
against	another	design	challenge	that	requires	active	search	for	heuristics	that	are	not	already	ingrained	into	
my	overall	design	heuristic	gestalt.	

There	is	still	much	that	to	learn	about	how	we	software	designers	actually	design.	
Another	book	 I	 looked	back	on	as	 I	was	writing	 this	essay	was	Object-oriented	Reengineering	Patterns	by	

Serge	Demeyer,	Stéphane	Ducasse,	and	Oscar	Nierstrasz	[Dem].	This	book	stands	out	as	example	of	not	just	a	
single	 pattern	 language,	 but	 instead	 a	 well-organized	 set	 of	 related	 pattern	 languages.	 It	 contains	 pattern	
languages	 for	 understanding	 and	 improving	 on	 the	 design	 of	 existing	 object-oriented	 systems.	 Each	 chapter	
starts	with	a	pattern	map	illustrating	potential	sequences	of	patterns	based	on	activities	you	want	to	do	next.	
For	example,	For	example,	Chapter	3	is	about	patterns	for	your	first	contact	with	a	system	(see	Figure	4).	This	
map	illustrates	the	dynamic	and	iterative	nature	of	applying	these	patterns.	There	is	no	obvious	beginning	or	
ending	 place,	 other	 than	 having	 a	 good-enough	 understanding	 of	 the	 system	 in	 order	 to	 make	 an	 initial	
assessment	of	the	re-engineering	effort.	So	you	may	cycle	between	talking	with	people	about	the	system	and	
verifying	what	you	hear	until	you	have	enough	information	to	proceed.	

	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	12	

	

Figure	4.		Patterns	for	First	Contact	with	A	System	from	Object-Oriented	Reengineering	Patterns.	

	Successive	chapters	address	understanding	the	system	more	deeply,	testing,	migration	strategies,	nuts	and	
bolts	activities	for	deleting	duplicated	code,	redistributing	responsibilities,	and	even	transforming	conditionals	
to	using	polymorphism.	Lower-level	reengineering	activities	reference	patterns	written	by	others,	as	well	they	
should.	A	pattern	language	need	not	be	self-contained;	it	can	leverage	the	work	of	others.	In	fact,	it	seems	more	
expedient	if	it	does.	

3.3 The	State	of	the	Art	(SOTA)	Changes	
We	designers	use	the	best	tools,	techniques	and	heuristics	we	have	at	hand.	Looking	through	our	current	lens	
of	experience,	we	may	consider	“legacy”	software	to	be	dated	or	quaint.	Billy	Vaughn	Koen	cautions	us	to	not	
judge	older	designs	too	harshly.	Our	designs	are	based	on	heuristics	we	used	at	the	time	decisions	were	made.	
A	 problem	 that	 isn’t	 unique	 to	 software,	 however,	 is	 that	 our	 software	 designs	 often	 outlive	 the	 lifespan	
originally	envisioned	for	them.	Consequently,	software	maintainers	are	stuck	with	sustaining	software	systems	
of	enormous	complexity	that	were	constructed	using	perfectly	reasonable	heuristics.	The	only	problem	is	that	
that	may	have	been	lost,	forgotten,	or	if	remembered,	are	considered	arcane	by	current	standards.	

One	challenge	is	to	find	practical	ways	to	record	the	heuristics	that	were	applied	and	our	design	rationale	to	
inform	our	future	selves	and	others.		Decision	records	and	design	decision	logs,	while	not	new	ideas,	currently	
seem	 to	be	 gaining	 some	 traction.	An	open	 source	project	 on	Github	 supports	 various	 forms	of	 architecture	
decision	 records	 which	 can	 be	 checked	 in	 along	 with	 the	 code	 [Hend].	 Our	 perspectives	 and	 collective	
heuristics	change,	grow,	and	evolve	over	time.	In	recognition	of	this	reality,	Michael	Nygard	proposes	a	format	
for	 decision	 records	 [Nyg]	 include	 decision	 status	 which	 can	 be	 “proposed”,	 “accepted”,	 “deprecated”,	 or	
“superseded.”	

3.4 Heuristics	compete	with	each	other.	
We	designers	 come	 to	our	own	 conclusions	 about	which	heuristics	 should	be	part	 of	 our	 toolkit,	 and	which	
ones	we	set	aside.	With	experience	and	perspective,	we	may	also	come	to	appreciate	that	heuristics	naturally	
compete	 with	 each	 other.	 Pattern	 authors	 could	 conceivably	 enhance	 our	 design	 decision-making,	 if	 they	
tagged	patterns	which	are	in	direct	competition	with	others	as	well	as	mentioning	other	approaches	that	they	
have	 seen,	which	 they	 explicitly	 do	not	 recommend,	 and	 consequently	 aren’t	worthy	 of	 being	 captured	 as	 a	
pattern.	 Patterns	 generally	 only	 tell	 us	 what	 to	 do	 instead	 of	 also	 what	 to	 not	 do	 (and	 why	 not	 to	 do	
something).	 This	 missing	 piece	 of	 the	 puzzle	 has	 to	 be	 filled	 in	 somehow,	 either	 through	 education	 or	
experience.	

For	 example,	 Domain	 Driven	 Design	 offers	 three	 different	 ways	 to	 verify	 data	 passed	 into	 business	
applications.	 You	 can	 use	 the	 Constraint	 pattern	 and	 create	 constraint	 objects,	 which	 are	 responsible	 for	
verifying	attributes.	This	 is	useful	when	verifying	 cross-attribute	 consistencies	or	attributes	 spread	between	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	13	

multiple	objects.	Or,	you	can	define	Helper	methods	directly	invoked	from	the	called	method	which	receives	the	
data.	Or	most	simply,	you	can	directly	verify	values	passed	into	the	called	method.	

Another	equally	viable	alternative	that	isn’t	mentioned	is	to	write	specifications	of	syntactic	constraints	to	
be	checked	by	framework	code	on	the	data	before	it	 is	passed	along	to	the	application	(a	technique	Java	and	
JavaScript	programmers	are	intimately	familiar	with).	In	all	fairness	these	frameworks	became	popular	shortly	
after	the	book	was	published.	

As	an	exercise	for	students	in	my	Enterprise	Application	Design	course,	I	presented	these	various	options,	
then	 had	 them	 justify	 why	 they	 might	 pick	 one	 approach	 over	 another.	 I	 then	 challenged	 them	 with	
increasingly	complex	situations	to	make	them	think	more	deeply	about	the	limits	to	their	designs.		

If	there	are	few	syntactic	checks	for	data,	fine,	go	ahead	and	use	pre-processing	frameworks.	If	you	want	to	
meaningfully	 collect	 and	 display	 all	 errors	 in	 that	 data	 and	 inform	 the	 user	 of	 multiple	 errors,	 popular	
frameworks	only	go	so	far.	But	it	is	simple	enough	to	build	your	own	framework	to	do	so	(and	I	demonstrated	a	
simple	one	that	I	had	designed	that	did	that).	If	validation	rules	can	dynamically	change	based	on	the	user	or	
current	 application	 context,	 then	 helper	 methods	 or	 statically	 specified	 checks	 won’t	 work.	 After	 throwing	
increasingly	complex	situations	at	my	students,	 I	 advised	 them	to	determine	what	 the	current	 requirements	
are,	and	pick	a	preferred	mechanism	based	on	what	they	know.	Don’t	anticipate	changing	requirements	or	the	
need	for	anticipated	flexibility.	When	requirements	change,	design	decisions	need	to	be	re-examined.	

As	a	prudent	designer,	I	try	to	pick	the	simplest	mechanism	that	works	reasonably	well	for	most	cases	that	I	
know	of	and	then	stick	with	it.		I	also	value	consistency	over	localized	cleverness.	But	at	the	same	time,	I	want	
to	know	what	 the	 tradeoffs	are	when	 I	 should	ditch	my	preferred	heuristic	 for	a	better	alternative.	Detailed	
comparisons	of	Domain	Driven	Design	data	verification	as	well	as	most	other	patterns	are	left	to	implementer	
or	to	the	educator.		

4. SUSTAINING	SOFTWARE	PATTERN	PRACTICES	

Patterns	are	neatly	packaged	heuristics	that	carry	extra	information	valuable	to	the	designer.	While	great	stuff,	
they	 are	 also	 in	danger	of	becoming	 lost,	 forgotten,	 or	outdated.	 	And	 they	 compete,	 along	with	many	other	
design	 strategies	 and	 rules-of-thumb	 for	 our	 attention.	 So	 what	 can	 we	 do	 to	 breathe	 continued	 life	 into	
software	patterns?	

In	Pattern-Oriented	Software	Architecture	[Busc],	the	authors	describe	two	early	attempts	at	linking	all	the	
known	software	patterns.	Effectively	organizing	the	growing	body	of	patterns	was	a	problem	even	in	the	early	
days.	They	recount	a	pattern	mapping	exercise	at	the	PLoP	’95	conference,	where	authors	wrote	their	patterns	
on	paper,	placed	them	on	the	floor,	and	then	used	string	to	link	their	patterns	with	other	related	ones:	“A	first	
picture	of	 the	pattern	universe	was	thus	drawn,	although	 in	a	very	 informal,	ad	hoc	and	uncoordinated	way.	
Nevertheless,	about	three	hundred	different	patterns	were	connected	this	way.”	They	tell	of	another	attempt	a	
few	months	 later	 at	 organizing	 patterns	 at	 a	 Hillside	 Group	 retreat	 where	 attendees	 wrote	 over	 150	 brief	
pattern	 descriptions—so-called	 patlets—and	 then	 linked	 them	 using	 several	 relationships.	 They	 specifically	
pointed	out	 two	 relationships	between	patterns:	 refinement,	where	one	pattern	 is	 a	 special	 case	of	 another,	
and	contrasts	with,	where	one	pattern	which	appears	at	first	glance	to	be	similar	to	another	is	not.	

In	 1998,	 The	 Patterns	 Handbook	 [Ris98]	 was	 published.	 It	 collected,	 selected,	 and	 curated	 a	 number	 of	
definitive	articles	written	by	patterns	experts	 in	addition	to	examples,	reviews,	an	annotated	bibliography	of	
published	 patterns	 along	 with	 contact	 information.	 Shortly	 thereafter,	 The	 Pattern	 Almanac	 2000	 [Ris00]	
organized	and	briefly	described	700	patterns.	Two	notable	things	strike	me	about	the	almanac.	The	categories	
identified	 by	 the	 pattern	 authors	 were	 used	 without	 modification.	 And	 there	 was	 no	 pattern	 critique.	 In	
hindsight	this	seems	appropriate,	given	the	relative	newness	of	patterns.	But	even	then,	there	was	recognition	
that	there	was	a	problem	that	needed	to	be	addressed.	In	the	preface	Linda	Rising	had	this	call	to	action:	“I’d	
love	to	hear	stories	about	patterns	that	have	or	have	not	worked	for	you,	as	well	as	insights	regarding	pattern	
evaluation	and	categorization.”	

Today,	 twenty	 years	 later,	 the	 software	 patterns	 ecosystem	 is	 much	 more	 complicated.	 The	 pattern	
landscape	seems	even	more	sprawling,	disjointed,	disorganized,	and,	at	the	same	time,	somewhat	dated.	While	
authors	continue	to	churn	out	new	patterns,	valuable	older	patterns	are	being	lost	and	forgotten.	And	only	a	
few	pattern	authors	and	the	communities	that	have	formed	around	them	are	the	ones	keeping	their	collections	
fresh.	As	they	do,	they	are	creating	islands	of	pattern	knowledge,	leaving	other	useful	software	patterns	behind.	

John	Vlissides,	 in	Pattern	Hatching	[Vlis],	 included	a	chapter	on	Seven	Habits	of	Effective	Pattern	Writers.	
He	observes,	“A	pattern,	in	contrast	(to	an	integral)	doesn’t	work	in	a	vacuum.	It	provides	the	solution	to	just	
one	 problem,	 so	 it	 must	 cooperate	 with	 other	 patterns.	 Hence	 a	 pattern	 writer	 must	 contemplate	 not	 one	

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	14	

pattern	but	several,	even	some	as	yet	unwritten…”.	He	advises	 future	pattern	authors	to	 take	time	to	reflect,	
adhere	to	a	structure,	to	be	concrete	early	and	often	(and	to	include	lots	of	real	world	examples),	keep	patterns	
distinct	 and	 complementary,	 present	 effectively,	 iterate	 tirelessly,	 and	 finally,	 to	 collect	 and	 incorporate	
feedback.	

This	seems	like	sound	advice.	But	anticipating	future	patterns?	Vlissides	 is	asking	a	 lot	of	us.	Yet,	 to	keep	
software	patterns	fresh	we	need	to	evolve	and	adapt	them	to	fit	our	current	software	design	practices.	As	our	
state	of	the	art	evolves,	so	too,	should	our	patterns.	

Additionally,	 to	 make	 sense	 of	 the	 larger	 body	 of	 software	 patterns	 as	 a	 whole,	 we	 need	 to	 show	 how	
patterns	 and	 collections	 relate	 and	 where	 they	 clash.	 There	 is	 a	 need	 to	 create	 and	 publish	 “maps”	 of	
overlapping/competing	 software	 design	 heuristics	 and	 patterns.	 And	 to	 recognize	 that	 not	 all	 patterns	 age	
gracefully.	 Patterns	 that	 do	 stay	 alive	 do	 so	 through	 continued	 use,	 but	 they	 also	 need	 ongoing	 critique,	
refinement,	and	improvement,	whether	that	work	is	done	by	the	original	authors	or	by	others	[Wirf06].	

I	fear	this	larger	sorting	and	revitalizing	effort	is	a	massive	undertaking.	
While	there	may	be	little	incentive	for	authors	of	legacy	patterns	collections	to	refresh	them,	we	as	a	larger	

software	patterns	and	design	community	could	become	conservators	of	the	more	valuable	software	patterns.	
We’d	need	to	take	this	on	as	a	long-term	effort.	And	as	we	do,	there	is	also	an	opportunity	to	explore	new	and	
better	 ways	 of	 communicating	 software	 patterns	 and	 our	 other	 design	 heuristics	 to	 diverse	 readers	 and	
consumers.	

For	 this	 revitalization	 effort	 to	 take	 hold,	 we	 need	 to	 somehow	 recreate	 a	 spirit	 of	 collaboration	 and	
enthusiasm	that	existed	when	both	software	patterns	and	Portland	Pattern	Repository	wiki	[Cunn]	was	new.	
We	need	to	 foster	ongoing	conversations	and	debate	about	patterns	of	 the	past,	patterns	of	 the	present,	and	
visions	for	software	patterns	in	the	future.	We	need	to	collect	stories	from	patterns	authors	and	experienced	
designers	 about	 how	 they	 actually	 design	 and	 how	 they	 weave	 patterns	 together	 with	 their	 other	 design	
heuristics.	 These	 stories	 might	 lead	 to	 deeper	 insights	 into	 how	 we	 actually	 design	 and	 be	 a	 source	 of	
inspiration	for	future	design	pattern	languages.	

5. ACKNOWLEDMENTS	

I’d	like	to	thank	my	shepherd,	Mary	Tedeschi,	for	reading	early	drafts	of	this	essay	and	prompting	me	to	come	
to	some	conclusions.	I’d	also	like	to	thank	my	writers’	workshop	colleagues	for	giving	me	pointed	advice	about	
ways	 to	 make	 this	 essay	 more	 cohesive	 and	 compelling.	 Thanks	 particularly	 to	 Mary	 Lynn	 Manns,	 Helene	
Finidori,	and	Chris	Richardson	who	made	sure	I	heard	what	they	had	to	say.	And	thanks	to	Allen	Wirfs-Brock	
who	paid	attention	to	pesky	details.	This	essay	is	stronger	because	of	his	critique	and	suggestions.	And	finally,	I	
also	 would	 like	 to	 thank	 Richard	 Gabriel	 and	 Jenny	 Quillien	 for	 finding	 the	 weak	 spots	 in	 my	 writing	 and	
encouraging	me	to	make	stronger	connections	between	patterns	and	heuristics.	
REFERENCES	
[Alex]	Alexander,	C.	Notes	on	the	Synthesis	of	Form.	Harvard	University	Press,	1964.	
[Busc]	Buschmann,	F.,	Meunier,	R.,	Rohnert,	H.,	Sommerlad,	P.,	Stal,	M.	Pattern-Oriented	Software	Architecture:	A	System	of	Patterns.	Wiley,	
1996.		
[Copl]	Coplien,	J.	The	Rule	of	Three,	http://wiki.c2.com/?RuleOfThree.	
[Cunn]	Cunningham,W.	The	Portland	Pattern	Repository,	http://c2.com/ppr.	
[Dem]	Demeyer,	S.	Ducasse,	S.,	Nierstrasz,	O.	Object-oriented	Reengineering	Patterns	Morgan	Kaufman,	2003.	
[Evan]	Evans,	E.	Domain-Driven	Design:	Tackling	Complexity	in	the	Heart	of	Software.	Addison-Wesley,	2004.	
[Fowl96]	Fowler,	M.	Analysis	Patterns:	Reusable	Object	Models.	Addison-Wesley,	1996.		
[Fowl02]	Fowler,	M.	Patterns	of	Enterprise	Application	Software.	Addison-Wesley,	2002.	
[Gamma]	Gamma,	E.,	Helm,	R.,	Johnson,	R.,	Vlissides,	J.	Design	Patterns:	Elements	of	Reusable	Object-Oriented	Software.		Addison-Wesley,	
1995.	
[Gig]	Gigerenzer,	G.,	Tod,	P.	and	the	ABC	Research	Group.	Simple	Heuristics	That	Make	Us	Smart.	Oxford	University	Press.	1999.	
[Hend]	Henderson,	J.	Architecture	Decision	Records,	Github	repository,	
https://github.com/joelparkerhenderson/architecture_decision_record		
[Hohp]	Hohpe,	G.,	Wirfs-Brock,	R.,	Yoder	J.,	Zimmermann,	O.,	“Twenty	Years	of	Patterns’	Impact,”	IEEE	Software,	Nov./Dec.	2013.	
[Ker]	Kerievsky,	J.	Refactoring	to	Patterns.	Addison-Wesley,	2004.	
[Koen]	Koen,	B.V.	Discussion	of	the	method:	Conducting	the	Engineer’s	approach	to	problem	solving,	Oxford	University	Press,	2003.	
[Mart]	Martin,	R.	Agile	Software	Development:	Principles,	Practices,	and	Practices.	Addison-Wesley,	2002.	
[Nico]	Nicola,	J.,	Mayfield,	M.,	Abney,	M.	Streamlined	Object	Modeling:	Patterns,	Rules,	and	Implementation.	Prentice	Hall,	2001.	
[Nyg]	Nygard,	M.	Blog	post,	“Documenting	Architecture	Decisions.”	http://thinkrelevance.com/blog/2011/11/15/documenting-
architecture-decisions.	
[Riel]	Riel,	A.	Object-Oriented	Design	Heuristics.	Addison-Wesley,	1996.	
[Ris98]	Rising,	L.	The	Patterns	Handbook:	Techniques,	Strategies,	and	Applications.	SIGS,	1998.	
[Ris00]	Rising,	L.	The	Pattern	Almanac.	Addison-Wesley,	2000.		

Are	Software	Patterns	Simply	a	Handy	Way	to	Package	Design	Heuristics?		Page	-	15	

[Wirf90]	Wirfs-Brock,	R.,	Wilkerson,	B.,	Wiener,	L.	Designing	Object-Oriented	Software.	Prentice	Hall,	1990.	
[Wirf02]	Wirfs-Brock,	R.,	McKean,	A.	Object-Oriented	Design:	Roles,	Responsibilities,	and	Collaborations.	Addison-Wesley,	2002.	
[Wirf06]	Wirfs-Brock,	R..	“Refreshing	Patterns"	in	the	May/June	2006	issue	of	IEEE	Software.	Vol.	23,	No.	3.	
[Mart]	Martin,	R.	Agile	Software	Development,	Principles,	Patterns,	and	Practices,	Prentice	Hall,	2003.	
[Yode14a] Yoder,	J.	Wirfs-Brock,	R.,	Aquilar,	A.	“QA	to	AQ:	Patterns	about	transitioning	from	Quality	Assurance	to	Agile	Quality,”	AsianPLoP	
2014.		
[Yode14b]	Yoder,	J.	Wirfs-Brock,	R.	“QA	to	AQ	Part	2:	Shifting	from	Quality	Assurance	to	Agile	Quality-Measuring	and	Monitoring	Quality,"	
PLoP	2014.		
[Yode14c]	Yoder,	 J.	Wirfs-Brock,	R.,	Washizaki,	H.	 “QA	 to	AQ	Part	3:	Shifting	 from	Quality	Assurance	 to	Agile	Quality-Tearing	Down	 the	
Walls,"	SugarLoafPLoP	2014.	
[Yode15]	Yoder,	J.	Wirfs-Brock,	R.,	Washizaki,	H.	“QA	to	AQ	Part	4:	Shifting	from	Quality	Assurance	to	Agile	Quality-Prioritizing	Qualities	
and	Making	them	Visible,"	PLoP	2015.		
[Yode16a]	Yoder,	 J.	Wirfs-Brock,	R.,	Washizaki,	H.	 “QA	 to	AQ	Part	5:	Being	Agile	At	Quality-Growing	Quality	Awareness	 and	Expertise,"	
AsianPLoP	2016.	
[Yode16b]	Yoder,	J.	Wirfs-Brock,	R.,	Washizaki,	H.	“QA	to	AQ	Part	6:	Being	Agile	At	Quality-Enabling	and	Infusing	Quality,"	PLoP	2016.	
[Vlis]	Vlissides,	J.	Pattern	Hatching:	Design	Patterns	Applied.	Addison-Wesley,	1998.	
	
	

