
1Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Rebecca Wirfs-Brock
rebecca@wirfs-brock.com

A Brief Tour of Responsibility-
Driven Design in 2004

A Brief Tour of Responsibility-
Driven Design in 2004

2Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

What Is Responsibility-Driven Design?

A way to design software that…
–emphasizes behavioral modeling of objects’ roles,
responsibilities, and collaborations
–uses informal tools and techniques
–enhances development processes from

XP (eXtreme Programming) to
RUP (Rational Unified Process)
…with responsibility concepts and thinking

3Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Responsibility-Driven Design Resources

Designing Object-Oriented
Software by Rebecca Wirfs-
Brock, Brian Wilkerson and
Lauren Wiener, Prentice-Hall,
1990
Our new book has more
techniques and practices.
Object Design: Roles,
Responsibilities and
Collaborations, Rebecca
Wirfs-Brock and Alan
McKean, Addison-Wesley,
2003
www.wirfs-brock.com for
articles & presentations

4Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Responsibility-Driven Design Principles

Maximize Abstraction
Hide the distinction between data and behavior. Think of
objects responsibilities for “knowing”, “doing”, and
“deciding”

Distribute Behavior
Make objects smart— have them behave intelligently, not
just hold bundles of data

Preserve Flexibility
Design objects so they can be readily changed

5Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Different Points-of-View:
Different Results

Data-Driven

Responsibility-Driven

Event-Driven

Rule-Based

Ad-Hoc

Choice of key design
abstractions

Distribution of data and
behavior

Patterns of
collaboration

Object visibilities

influence

6Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Designing a HorseHead

Legs (4)

Tail
BodyStart

Stop

Speed Up

Slow Down

7Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Designing a Horse Responsibly

8Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Responsibility-Driven Design Constructs
an application = a set of interacting objects

an object = an implementation of one or more roles

a role = a set of related responsibilities

a responsibility = an obligation to perform a task or know
information

a collaboration = an interaction of objects or roles (or
both)

a contract = an agreement outlining the terms of a
collaboration

9Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Roles and Responsibilities

10Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Role Stereotypes

Stereotypes are simplified views that help you
understand an object or component’s purpose

“Something conforming to a fixed or general pattern;
especially a standardized mental picture held in common by
members of a group and representing an oversimplified
opinion.”—Webster’s Seventh New Collegiate Dictionary

Each object fits at least one stereotype. They can
fit more than one. Common blends:

service provider and information holder, interfacer and
service provider, structurer and information holder

11Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Coordinator—Coordinates actions
Characterized by actions it delegates
Example: ViewCoordinator

Stereotypes
simplified views of roles

Controller—Controls application execution

Characterized by decisions it makes

Example: TransactionController

12Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Stereotypes
simplified views of roles

Interfacer—Communicates actions and
intentions between our system and others, or
between layers of a system

Characterized by what it communicates with
and how well it “hides” their details
Examples: UI objects, an object that
“wraps” an interface to another
application

Service Provider—Performs specific operations on demand.
Characterized by what it does (computation, calculation,
transformation)
Example: CreditChecker

13Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Stereotypes
simplified views of roles

Information Holder—Holds facts.

Characterized by what it knows

Example: TransactionRecord, Account

Structurer—Maintains relationships between others.
Characterized by who it knows and what it knows about
them
Example: Order

14Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Layered Architecture

Application
Coordination

& Control

Business
Information and

Services

Technical
Services

Presentation
User Interfacers

Controllers and
Coordinators

Information-Holders, Service-Providers, and Structurers

External Interfacers
Data Interfacers

Window

EntryField

PushButton PushButton

EntryField

Window

Registration
Coordinator

Login
Coordinator

User
Customer

Account
Transaction

User Session

dBASEConnectOracleConnect

15Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

1. In early modeling, stereotypes help you think about the
different kinds of objects that you need

2. You consciously blend stereotypes with a goal of making
objects more responsible and intelligent

–information holders that compute with their information
–service providers that maintain information they need
–structurers that interface to persistent stores, and derive new
relationships
–interfacers that transform information and hide many low-level details

3. Study a design to learn what types of roles predominate and
how they interact

Three Uses for Object Role Stereotypes

16Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Informal Technique: CRC Cards
Candidate, Responsibilities, Collaborators

������������	�

�
��
����������

���	����	�����

�	���
���	���

�����

��
�����	�

������������	�

�
��
����������

���	����	�����

�	���
���	���

�����

��
�����	�

Stereotype: Controller? Coordinator?

17Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Purpose: Describing Candidate Roles

An object does and knows certain things for a reason.
Briefly, say why it exists and an overview of its
responsibilities. Mention one or more interesting facts about
the object or a detail about what it does or knows or who it
works with.

A compiler is a program that translates source code into machine
language.

A FinancialTransaction controls a single accounting transaction
performed by our online banking application. Successful
transactions result in updates to a customer's accounts.

18Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Look for Appropriate Abstractions

Model an abstraction if it defines
responsibilities common to at least three
subclasses

Do not include a lower level abstraction
if it adds no significant value

Objects can always behave differently by
checking and making decisions based on
encapsulated state!

Account

Bank
Account

MoneyMkt
Account

Savings
Account

Checking
Account

Payment
Account

19Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

What are Responsibilities?

Behavior for
knowing
doing
deciding

Stated at a high level

Assigned to appropriate objects

20Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

How Do You State Responsibilities?

They are larger than individual attributes or operations. A
single responsibility is often realized by several methods

Example: A Customer object has a name which may be comprised of
a first name, surname, middle name, and there may be titles or
nicknames.
A good statement of its responsibility: A customer “knows its name
and preferred ways of being addressed.”

Use strong descriptions. The more explicit the action, the
stronger the statement.

Stronger verbs: remove, merge, calculate, credit, activate
Weaker verbs: organize, record, process, maintain, accept

21Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

CRC - the Responsibilities

22Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Guidelines for Assigning
Responsibilities

Keep behavior with related information. This
makes objects efficient

Don’t make any one role too big. This makes
objects understandable

Distribute intelligence. This makes objects smart

Keep information about one thing in one place.
This reduces complexity

23Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Options for Fulfilling a Responsibility

An object can always do the work itself:
A single responsibility can be implemented by one or more methods
Divide any complex behavior into two parts

One part that defines the sequence of major steps + helper parts that
implement the steps

Send messages to invoke these finer-grained helper methods

Delegate part of a responsibility to one or more helper objects:
Ask them to do part of the work: make a decision or perform a service
Ask them relevant questions

24Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Collaborations and Trust Regions

25Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

CRC - the Collaborators

��	�	���	����

��	��	
��

�	����	�����

�	���
���
�������

�	����������

�	��
��������	�

��	�	���	����

��	��	
��

�	����	�����

�	���
���
�������

�	����������

�	��
��������	�

26Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Guidelines for Collaborating

Delegate control if possible. Let collaborators
be responsible

Look for opportunities to ask for services or
direct others’ actions more intelligently

Give objects the ability to both do and know
things

Look for ways to make similar things work
consistently

27Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Start with rough sketches…

28Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

…then get more precise

Show a sequence of messages between these objects
Label message arrows with names of requests
Show arguments passed along with requests when it is
important to understanding what information (objects)
pass between collaborators
Show return values when it is important that information is
returned from a request

29Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

/Selector /Presenter :Timer :Message
Builder :Guesser /Guess

:Letter :Message

handleTimeout()
nextGuess()

presentGuess()

handleSelection()
addTo(Message)

addLetter(Letter)

guess

Sequence Diagram:
Adding a Guess To A Message

Letters, Words,
Sentences,
and commands
can all be guesses

Message is
responsible for
handling specific
Guesses by name

30Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Definition: Collaborate

To work together, especially in a joint intellectual effort
This definition is collegial: Objects working together toward a common
goal. Both client and service provider can be designed to assume that if
any conditions or values are to be validated, they need be done only
once

UserLoginController Passw ordChecker

isValid(password)

I am sending you a request at the right
time with the right information

I assume that I don’t have to check to see
that you have set up things properly for
me to do my job

31Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

But Can Collaborators Always Be
Trusted to Behave Responsibly?

Consider collaborations between objects…
that interface to the user and the rest of the system
inside your system and objects that interface to external
systems
in different layers or subsystems
you design and objects designed by someone else

32Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Informal Tool: Technique Trust Regions

Divide your software into regions where trusted
communications occur. Objects in the same trust
region communicate collegially

Give objects at the edges responsibilities for verifying
correctly formed requests

Assign objects that have control and coordination
responsibilities added responsibilities for recovering
from exceptions and errors

33Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Implications of Trust

In a large system, distinguish whether collaborations
among components can be trusted

Identify the guarantees, obligations, and
responsibilities of each component

Use contracts to specify the details

34Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Trust Regions in The Telco Integration Application

���������	�
�����	��
�������� �������
�������

��	����	����
�������

������
�	���������
�������

�����
������
�������

����	
���������	�
���������	�

������

�	���������

������

��	����	����

������

�������
������

�����
������

���������	�

��	
�����	���

���	��

�	��	������
�

����

��	
�����	���

���	��

�	��	������
�

����

���������
��

�	��		
��
�

�����	���
��

�
�������	��

����	����	�

�
�����	�

���������
��

�	��		
��
�

�����	���
��

�
�������	��

����	����	�

�
�����	�

trust region

35Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Objects At The “Edges” Take On Added
Responsibilities

����������	
�� ����

��	����� ���������

�������

�����

�������

�����

������������

������	��������

������	�����������
�����
����������

����
���������������

�����������������

�	����������	�

�

������	���������	����

�����	�������������	���� ���������
���	������������

����
����������������

���	��

�	��
�	�

	�	����
 �

�	��
�	�

	�	����
 �

��������	��

�����!���	��

�������
��	��

	"�	���
�

��������	��

�����!���	��

�������
��	��

	"�	���
�

#����	��

$�����	�%

�	��	���

#����	��

$�����	�%

�	��	���

#����	��

$�����	�%

�	��	���

#����	��

$�����	�%

�	��	���

36Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Collaborations Among Trusted
Colleagues

For collaborations among objects within the same trust
region, there is little need to check on the state of
things before and after each request

If an object cannot fulfill its responsibilities and it is
not designed to recover from exceptional conditions, it
could raise an exception or return an error, enabling its
client (or someone else in the collaboration chain) to
handle the problem

37Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

When Receiving Requests From
Untrusted Sources

When receiving requests untrusted sources, you are
likely check for timeliness, relevance, and correctly
formed data

But don’t design every object to collaborate
defensively

It leads to poor performance
Redundant checks are hard to keep consistent and lead to
brittle code

38Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

When Using An Untrusted Collaborator

If a collaborator can’t be trusted, it doesn’t mean it is
inherently more unreliable. It may require extra
precautions to use:

Pass along a copy of data instead of sharing it
Check on conditions after the request completes
Employ alternate strategies when a request fails

39Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Control Styles and Control Center
Design

40Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Control Design

Involves decisions about
how to control and coordinate application tasks (use case
control design),
where to place responsibilities for making domain-specific
decisions (rules), and
how to manage unusual conditions (the design of
exception detection and recovery)

Goal: develop a dominant pattern for distributing the
flow of control and sequencing of actions among
collaborating objects

41Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Control Styles

aDhfjkl

aDhfjkl aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

aDhfjklaDhfjkl

aDhfjklaDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl
aDhfjkl

aDhfjkl

aDhfjkl

Centralized Delegated

DispersedControl styles range from
centralized to fully
dispersed

42Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Characteristics of Centralized Control

Generally, one object (the controller) makes most of the
important decisions. Decisions may be delegated, but most
often the controller figures out what to do next. Tendencies
with this strategy:
Control logic can get overly complex
Controllers surrounded by simple information holders and

service providers
These simple objects tend to have low-level, non-abstract

interfaces

Drawback:
Changes can ripple among controlling
and controlled objects

43Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Characteristics of Delegated Control
A delegated control style passes some decision making and

much of the work off one objects surrounding a control
center. Each object has a more significant role to play:
Coordinators know about fewer objects than dominating

controllers
Objects both know and do things—blends of stereotypes
Higher-level communications between objects

Benefits:
Changes typically localized and simpler
Easier to divide detailed design work

44Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Characteristics of Dispersed Control

A dispersed control style spreads decision making and action
among objects who do very little, but collectively their work
adds up. This can result in:
Little or no value-added by those receiving a message and

merely “delegating” request to next in chain

Drawback:
Hardwired dependencies between objects in call chain
May break encapsulation

45Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Control Center Design
A control center is a place in an application where a consistent
pattern of collaboration needs to exist.

In all but the simplest application, you will have multiple
control centers

Control center design is important to consider when:
Handling user-initiated events (typically described by use cases)
Managing complex software processes
Designing how objects work together within a subsystem
Controlling external devices and/or external applications under your
software’s control

46Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Control Style Development Guidelines

Don’t adopt the same control style everywhere. Develop a
control style suited to each situation:

Adopt centralized control when you want to localize decisions in a
single controller
Develop a delegated style when work can be assigned to specialized
objects

Several styles can co-exist in a single application
Similar use cases often have a similar control style
Control styles within subsystems can vary widely

General design rule: Make analogous parts of your design be
predictable and understandable by making them work in similar
ways

47Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Different Application Architectures

Blackboard

Knowledge
Source

Control

Knowledge
Source

Knowledge
Source

Knowledge
Source

Blackboard

Filter
Pipe

Filter
Pipe

Data
Source

Data
Sink

Pipe

Pipes and Filters

Presentation
Layer

Application
Layer

Domain Services
Layer

Technical Services
Layer

Layers

48Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Contracts

49Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Responsibility-Driven
Design Contracts

“The ways in which a given client can interact with a given server are
described by a contract. A contract is the list of requests that a client can
make of a server. Both must fulfill the contract: the client by making only
those requests the contract specifies, and the server by responding
appropriately to those requests. …For each such request, a set of
signatures serves as the formal specification of the contract.”

—Wirfs-Brock, Wilkerson & Wiener

50Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Finding and Preserving Contracts

A class that is viewed by all its clients identically, offers a
single contract

A class that inherits a contract should support it in its entirety.
It should not cancel out any behavior

A subclass may extend a superclass by adding new
responsibilities and defining new contracts

A class that is viewed differently by clients can offer multiple
contracts. Organize responsibilities into contracts according to
how they are used:

Example: Specify four BankAccount contracts
1. Balance Adjustment
2. Balance Inquiry
3. Managing Challenge Data
4. Maintaining Transaction History

51Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Specifying Detailed Contracts

“Defining a precondition and a postcondition for a routine is a
way to define a contract that binds the routine and its
callers….”

—Bertrand Meyer, Object-Oriented Software Construction

Meyer’s contracts add even more details. They specify:
Obligations required of the client

Conditions that must be true before the service will be requested
Obligations required of the service provider

Conditions that must be true during and after the execution of the service
Guarantees of service

Defined for each method or service call

52Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Example: A Contract For A Request That
Spans A Trust Boundary

Only needs to check for
sufficient funds and
active accounts, need
not check that user is
authorized to access
accounts

(preconditions)
Sufficient funds in the
first account

Honor requests only if
both accounts active

(postcondition)

Both balances are
adjusted

Service provider:
backend banking system

Funds are transferred;
balances adjusted

(precondition)

User has two accounts

Client: Online banking
app

BenefitsObligationsRequest:

Funds Transfer

53Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

A Unified View of Contracts

A design can be viewed at different levels of
abstraction

Responsibility-Driven Design Contract
name and description
list of clients and suppliers
list of responsibilities defined by the contract

method signatures

Meyer’s contracts add precision where we stopped:
method signature

• client obligations
• supplier benefits
• preconditions, postconditions, invariants

54Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

When To Use Contracts

Use them as a point of discussion when you are
assigning responsibilities among collaborators

But writing detailed contracts is a lot of work. Use
them when you want to be formal and precise

Detailed contracts are especially useful for defining
collaborations between your software and external
systems

55Wirfs-Brock Associates www.wirfs-brock.com Copyright 2004

Designing Responsibly

Use the best tool for the job
Tools for thinking, abstracting, modeling
Tools for analyzing
Tools for making your application flexible

Learn your tool set, and practice, practice, practice

The best designers never give up, they just know when
to call it a day!

