

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

Looking for Powerful Abstractions

Rebecca J. Wirfs-Brock

Vol. 23, No. 1
January/February 2006

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright

holders. All persons copying this information are expected to adhere to the terms and
constraints invoked by each author's copyright. In most cases, these works may not be

reposted without the explicit permission of the copyright holder.

0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 1 3

design
R e b e c c a J . W i r f s - B r o c k ■ W i r f s - B r o c k A s s o c i a t e s ■ r e b e c c a @ w i r f s - b r o c k . c o m

B
etty Edwards, in Drawing on the
Artist Within (Fireside Press, 1987),
poses this thought experiment: Imag-
ine we believed that only those en-
dowed with an innate gift could learn
to read. Teachers would think the best

way to instruct would be to expose a child to
lots of reading materials and then wait to see
what happens. Fear of stifling creativity would

dampen attempts to guide new
readers. If a child asked how to
read something, the teacher
would say, “Try whatever you
think works. Enjoy it and ex-
plore. Reading is fun!” Per-
haps one or two in any class
would possess that rare read-
ing talent and spontaneously
learn to read.

This is absurd. But if every-
one believed that the ability to read was a rare
and innate talent, no one would teach reading
fundamentals.

Edwards claims that artistic talent only
seems rare and out of the ordinary because we
expect it to be. She believes that learning to
draw “is simply a matter of learning basic per-
ceptual skills—the special ways of seeing re-
quired for drawing.” She also claims that “any-
one can learn enough seeing skills to draw a
good likeness of something seen ‘out there’ in
the real world.” She has devoted a lifetime to
discovering effective techniques for teaching
students how to “see” so that they can draw
reasonable representations of real-world scenes.

In software, I’ve encountered similar biases,
especially when it comes to designing object-
oriented applications. Some claim that only in-
nately talented designers can form good ab-
stractions, develop a well-factored object
design, or construct a domain model. The im-
plication seems to be that design talent is rare
and that only gifted designers are up to the
more challenging task of creating good ab-
stractions. Balderdash! Although design is a
highly creative activity, we can still learn fun-
damental design skills—and accomplish a lot
with them.

In this and future columns, I’ll explore ways
of seeing that have helped me become a better
designer. Object technology is just one tool in
a very rich toolbox, but since it’s my area of
expertise, I start by discussing the fundamental
design skill of finding objects.

Finding objects means
finding good abstractions

Designers must be able to see the problem out
there in the real world and solve it by applying
the right tools and technologies. Like artists, ob-
ject designers need to see in special ways to cre-
ate good solutions—call this modeling or design-
ing, if you will. However, since no two designers
ever come up with identical objects, how can
they agree on what makes good objects?

Early object design books showed how to
pick out objects (noun phrases) by examining a
requirements specification. When my colleagues
and I did this in our book, Designing Object-
Oriented Software (Prentice Hall, 1990), many

Looking for Powerful
Abstractions

Rebecca J. Wirfs-Brock

1 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

mistook our example as suggesting the
best way to find objects: write a prob-
lem description, scan it for nouns, sort
through synonyms to come up with
worthy class names, then apply a few
heuristics to sort out duds. In fact, we
only intended to demonstrate the typical
thinking involved in coming up with a
reasonable first cut at design objects.

In practice, I never underline nouns.
More efficient ways exist to identify key
object concepts. Some of these represent
domain concepts—what Eric Evans
calls in Domain-Driven Design (Addi-
son-Wesley, 2004) the ubiquitous lan-
guage that’s structured around a soft-
ware’s domain. Written requirements,
problem descriptions, and use cases are
just a few sources for discovering this
language. It’s especially fruitful to talk
with expert users about how they use
your software. The idea is that some of
the names these experts have for things
and for some of the activities they per-
form might end up represented in your
software as domain objects—with your
design spin on them, of course.

In addition to domain objects, you’ll
need to find many other kinds of ob-

jects, and many other ways to identify
potential design objects exist. My more
recent design book, Object Design:
Roles, Responsibilities, and Collabora-
tions (Addison-Wesley, 2003), devotes a
whole chapter to effective search strate-
gies. Although some objects have a con-
nection to your software’s domain,
many are pure inventions that represent
abstractions of

■ the work your system performs;
■ things directly affected by or con-

nected to your application (other
software, physical machinery, hard-
ware devices);

■ information that your software uses
or creates;

■ decision-making, control, and coor-
dination activities;

■ structures and groups of objects; and
■ representations of real-world things

that your software needs to know
about.

What’s important when looking for
these kinds of objects is to identify ab-
stractions that form the basis of a well-
factored design.

Identifying good abstractions
Designing an object-oriented program

is like organizing a community of indi-
viduals whose collective tasks achieve the
community’s larger goals. Finding good
abstractions means identifying individual
classes of objects whose behaviors mesh
well with others. Each individual object
should stand on its own and add value,
but objects aren’t designed in isolation.
Designing software objects is more like
scripting a movie than drawing a still-life
portrait. Each character—er, object—
should have a well-defined role to play.

Start with candidates
It’s best to start with candidates, not

classes. In 1988, Ward Cunningham and
Kent Beck invented CRC cards to help
teach object-oriented concepts. The 4-
by-6-inch index cards were a handy way
to record initial design ideas about a
class and its responsibilities and collabo-
rators. In my current thinking, I still use
CRC cards, but I look for candidates in-
stead of classes because I want to give
myself some wiggle room. When I first
start thinking about a candidate, I’m not
sure whether it will represent

(a) (b)

–type
+discount rate
+enrollment date
–creditCardInfo
+yearToDatePurchases

+applyDiscount()
+enroll()
+recordPurchase()

Guests don’t
get any
discounts

RegisteredCustomers
do get discounts ...
for now it is a single
factor based on yearly
purchase amount

+name
+address

<<abstract>>
Customer

RegisteredCustomerGuest

+name
+address
+contact info

<<abstract>>
Customer

applyDiscount()

discount rate

Preferred
Customer

RegisteredCustomerGuest

+contact info

+applyDiscount()

+applyDiscount()

Figure 1. (a) A simple design solution with one class per concept; (b) a preferred design, which separates
RegisteredCustomer and Guest classes and defines a minimal Customer abstraction.

J a n u a r y / F e b r u a r y 2 0 0 6 I E E E S O F T W A R E 1 5

DESIGN

■ a common role that could be shared
by many different classes of objects
(which I’d eventually define an in-
terface for),

■ an abstract class that might form the
base of an inheritance hierarchy, or

■ a concrete class.

I want the flexibility to decide how to
realize that candidate—once I think it
will stick around.

Consider the power of the abstractions
You need to justify candidates based

on the power of the abstractions they
represent. What makes a good abstrac-
tion? Economy of expression is impor-
tant. Finding the right level of abstrac-
tion takes practice and experimentation.
You might draw too many distinctions
and create too many classes—a dull de-
sign that works but is tedious.

Consider this small design problem:
a customer is registered on a system and
has a unique name and password. A
preferred customer is one who spent
over $500 in the past year. Preferred
customers receive special discounts on
merchandise and special notices of sales.
Guest customers can make purchases
but aren’t registered. How many differ-
ent classes of objects should you define?

A simple design solution might
model four classes—an abstract Cus-
tomer class and three concrete classes:
Guest, RegisteredCustomer, and Pre-
ferredCustomer (see figure 1a). A more
compact design might represent these
different customers in just one Cus-
tomer class. We can get away with this
if we encode what’s common to all types
of customers within that class. We also
might want to define a customer-type
attribute to constrain other customer at-
tributes’ values. However, it could get
ugly if the Customer class defines many
attributes that don’t apply to Guests, so
maybe we should distinguish between
guests and other types of customers. Yet
another design might model two differ-
ent classes: RegisteredCustomer and
Guest. Which design is better?

The first design encodes behavior
differences within each class. If we de-
cided to add a different customer type,
we would likely create a new class. But

should we? What if we offered a better
discount rate to customers who spend
over $2,000 each year? Is this worthy
of another class—PremierCustomer?
Or is this splitting hairs? All three de-
signs work.

Given a choice, I prefer fewer, more
powerful classes than many simpler
ones. Proper encoding lets one class
represent several different variations.
But tricky encoding can lock you into
premature abstractions. So, after think-
ing a bit, I’d probably settle on a design
that models three different classes—
one abstract class for Customer and
two concrete classes for Guest and
RegisteredCustomer (see figure 1b).
Customer would define minimal com-
mon behavior shared by both Regis-
teredCustomer and Guest. I don’t want
to pack too much into that abstrac-
tion—only information and behavior
that guests and registered customers
have in common. Realistically, dis-
counts could apply to RegisteredCus-
tomers along many dimensions. Even
starting very simply for now, I’d hide
those details inside the implementation
of the RegisteredCustomer class. I
wouldn’t fold an encoding of discount
rate into the abstract class Customer
unless I was certain that discounting
rules wouldn’t change over time.

Model what’s important to your
software’s behavior

Stop trying to model the real world.
It’s a myth that objects should accu-
rately reflect real-world things. Even if
we end up with domain concepts in our
design, these objects are at best loosely
connected to their real-world counter-
parts. Evans likens modeling a domain
to making a movie. Even a documen-
tary film doesn’t show unedited real
life; film-makers edit raw film to make
a point. We software designers simi-
larly shape objects to our purpose.
Even if we’re modeling things that have
real-world counterparts—such as or-
ders, customers, and shipments—we
only model what’s important to our
software’s behavior. And we invent
other attributes and behaviors for these
objects that aren’t present in their real-
world counterparts.

So, break away from thinking you
need to capture objects from the real
world. Instead, think about designing
objects that work in your software’s
world.

Consider differential behavior
Finally, look for the right level of ab-

straction based on differential behavior.
I remember a heated discussion at a

“Finding Objects” birds-of-a-feather
session at a recent OOPSLA (Object-Ori-
ented Programming: Systems, Lan-
guages, and Applications) conference.
One gentleman insisted that accurately
modeling the real world was important
and stated that if your application sup-
ports the sale of books, CDs, and elec-
tronics, it should represent these as
distinct classes. Two developers who
worked for one of the world’s largest
online retailers were also in the room.
Fortunately, they emphatically stated
that they designed a generic Resource
class that defined characteristics and
information for all items sold—
whether they were books, calendars,
CDs, or toasters. While the distinction
between a book and CD is important
to a purchaser, they didn’t need to de-
fine different classes for these different
types of things because they could treat
them alike in their application. To
identify a common shared abstrac-
tion—Resource—that represented all
sold items, these designers let go of the
little details that differentiated each
item to focus on what they have in
common.

F inding the right level of abstraction
takes practice and experimentation.
There are times when both concrete

classes and their common abstraction
add value to a design, and there are
times when they don’t. To find good
classes, experienced designers make
distinctions based on significant behav-
ior differences.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates and an adjunct professor at Oregon Health & Science
University. She is also a board member of the Agile Alliance.
Contact her at rebecca@wirfs-brock.com; www.wirfs-brock.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

