
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

Designing for Recovery

Rebecca Wirfs-Brock

Vol. 23, No. 4
July/August 2006

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

0 7 4 0 - 7 4 5 9 / 0 6 / $ 2 0 . 0 0 © 2 0 0 6 I E E E J u l y / A u g u s t 2 0 0 6 I E E E S O F T W A R E 1 1

design
E d i t o r : R e b e c c a J . W i r f s - B r o c k ■ W i r f s - B r o c k A s s o c i a t e s ■ r e b e c c a @ w i r f s - b r o c k . c o m

W
hen things go right, software hums
along like well-oiled machinery—re-
ceive an event, twiddle with inputs,
send a flurry of messages, change the
system state, interact with the envi-
ronment or users, then wait for the

next chunk of work. Smooth. Mechanical. Pre-
dictable. But what happens when something

goes wrong? How should you
design your software to detect,
react, and recover from excep-
tional conditions?

If you follow Jim Shore’s
advice and design with a fail
fast attitude, you won’t expend
any effort recovering from fail-
ures (“Fail Fast,” IEEE Soft-
ware, Sept./Oct. 2004). Shore
argues that a “patch up and

proceed” strategy often obfuscates problems.
For example, choosing to plug in a default
value when your software can’t find a para-
meter setting in a configuration file can lead
your software to fail later or work unpre-
dictably. Returning a null value isn’t arguably
better. What’s the caller supposed to do with a
null—set a default, report an error? That
seems like pushing the problem away from its
origin to a more uninformed source. Shore’s
simple design solution is to write code that
checks for expected values upon entry and re-
turns failure notifications when it can’t fulfill

its responsibilities. He argues that careful use
of assertions allows for early and visible fail-
ure, so you can quickly identify and correct
problems.

Failing fast is a reasonable option for deal-
ing with programmer errors, but at times your
software encounters rare but anticipated ex-
ception conditions. If these exceptional cases
aren’t handled well, users might view your
software as buggy, riddled with logic errors.
Most software needs to keep working in spite
of many anticipated glitches. How gracefully it
reacts and responds to anticipated exceptional
cases is a measure of its quality.

Recovery options
Many scenarios exist in which failing fast

wouldn’t be your first choice. Consider when

■ data is inconsistent but you still might be
able to make sense of it;

■ a query doesn’t return expected results;
■ a requested action isn’t possible due to the

software’s current state, but conditions could
change;

■ a connection is intermittent;
■ a resource isn’t currently available;
■ an external system doesn’t respond as ex-

pected; or
■ your software’s view of the state of world

doesn’t match the views of other systems or
your users.

Designing for Recovery
Rebecca Wirfs-Brock

The consequences of structural failure in nuclear plants are so great that extraordinary
redundancies and large safety margins are incorporated into the designs. At the other
extreme, the frailty of such disposable structures as shoelaces and light bulbs, whose
failure is of little consequences, is accepted as a reasonable trade-off for an inexpensive
product. For most in-between parts or structures, the choices are not so obvious.

—Henry Petroski, To Engineer is Human

1 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

DESIGN

As designers, we have a choice in
how much effort to expend designing
recovery actions. To intelligently sort
through the costs and appropriateness
of various recovery scenarios and ac-
tions, it’s useful to know your options.
When something can’t proceed as ex-
pected in a block of code, you can
silently ignore the request, admit fail-
ure, resign, retry, perform an alternative
action, or appeal to a higher authority.

Ignore the request
No, I didn’t put “ignore the re-

quest” on the list just so I could quickly
dismiss it. Most of the time, code that
can’t perform a request shouldn’t swal-
low an exception and pretend that
everything is okay. But when a failure
to act is of no consequence to the re-
questor or overall system, this might
not only be appropriate—it might be
the only reasonable option.

Consider an interrupt handler that
by design drops an event when it can’t
post it to a shared buffer. An animation
might “jump” ahead in sequence or the
latest stock quote might not get posted.
Although not desirable, this might be
the best you can do. Make this choice
in good conscience when there aren’t
any serious consequences and when it
won’t compromise requirements.

Failing, really failing:
Two options

Admitting failure is another simple
option. As already discussed, if a method
or function can’t perform a request, you
can design it to signal an exception, re-
turn an error condition, set some failure
status indication, or log the failure (or a
combination of notification and log-
ging). Most modern programming lan-
guages provide an exception mechanism
that can be used to signal failures. I pre-
fer to raise exceptions only in the case of
an emergency. Some extraordinary, atyp-
ical condition has caused my code to in-
extricably veer away from any reason-
able course of action, and all I can do is
signal that there’s a problem. An exam-
ple would be a database connection be-
coming unavailable in the middle of a
query method.

However, no items matching a query

isn’t a failure on my code’s part—just a
normal, expected case. Queries don’t al-
ways yield results. So, in that case, I
wouldn’t signal failure but would in-
stead design my method to return an
empty collection, null object, or some re-
sult that the caller could easily interpret
to signify “nothing found but carry on.”

Which brings me to your next op-
tion. If your software can’t recover from
a failed action, you can design it to re-
sign—to fail a little more gracefully than
failing fast. You might free up acquired
resources, clean things up, and then sig-
nal definite failure. In this case, the
caller need not attempt any further re-
covery because it isn’t possible. By con-
vention, declaring an unchecked excep-
tion in Java indicates that it’s probably
not easy to recover from this exception.
But there’s no definite way of signaling
“I resign.” Other programming lan-
guages offer no better option, so mech-
anisms for signaling resignation are left
as implementation concerns.

Of course, when a method reports a
failure, as opposed to a definite failure,
recovery might be possible. Usually, the
best choice is the caller or a specially
designed recovery handler, which have
enough contextual information to
carry out the recovery. For example, if
a query fails because a database con-
nection is unavailable, it might make
sense to attempt to reestablish that
connection and query again. This leads
me to the next recovery strategy.

Intelligent retry
Retrying is sensible when the failure

was likely caused by a temporary condi-
tion that you can either try to rectify
through your own code or that’s likely to
change owing to actions outside your
software’s control. An external system
might be momentarily busy or a shared
resource temporarily unavailable. Sooner
or later, the system will be freed up or the
resource will become available.

But how much retrying should you
do? As a designer, I find arbitrary retry
strategies extremely annoying. Is it re-
ally better to blithely retry three times
(which seems to be culturally acceptable
but still nonsensical) than five, seven, or
23 times? It’s much more satisfying to
base retry strategies on reasoning, logic,
and a deeper understanding of how the
design will interact with the complex
state of other systems, the network, or
the hardware. I want retrying to actu-
ally increase my odds for success. But
determining satisfactory, reasoned, and
sound retry strategies can be difficult.

I recently spoke with a designer whose
software had often failed to connect to a
critical network resource. As initially
designed, the software would fail after
retrying a few times. Yet because this was
part of a critical business transaction, the
users would repeatedly attempt the trans-
action. Even more confounding was that
they had to rekey some information be-
fore retrying the transaction. So, the de-
signer explained the situation to his cus-
tomers and asked how long the software
should try to acquire the resource. The
customers said one hour. Implementing
this change resolved the issue, because
the software almost always established a
connection within an hour.

Involving customers and users
When failure isn’t an option and

retrying doesn’t make sense, it might be
appropriate to design an acceptable al-
ternative. These aren’t perfect—accept-
able alternatives almost always repre-
sent compromises. And most of the
time you must discuss, think through,
and work out what’s acceptable with
several interested parties. If the soft-
ware can’t record critical information,
even after we’ve retried, is it acceptable

I find arbitrary retry
strategies extremely
annoying. Is it really

better to blithely retry
three times rather than
five, seven, or 23 times?

DESIGN

to record it at a secondary location? If
that secondary location doesn’t work,
should we invest in making incremen-
tal backups of that information as the
software is running (at the risk of slow-
ing things down)? If information is
only partially complete, is it acceptable
to interpret it in a particular way rather
than reject it outright?

There are often no cut-and-dried an-
swers. As designers, we should be pre-
pared to offer alternatives and open up
a dialog with our customers. Each
choice we make has an associated devel-
opment cost and might not even prove
acceptable until it has been field tested.

Appealing to a higher authority
But software can’t recover from

every failure on its own. In certain situ-
ations, it might be appropriate to ask a
human to apply judgment and steer the
software to an acceptable resolution.

For several years, I worked on a
complex telecommunications integra-
tion system that received product orders
from external applications. It translated

orders into work tasks, then sent re-
quests to other systems to provision
equipment, establish billing informa-
tion, and complete the order. Sometimes
requests to external systems would fail
after all our recovery actions had been
exhausted. When this happened, we de-
signed our software to place an order on
a problem queue and report it to a cus-
tomer service representative. Admit-
tedly, this didn’t seem perfect, but we
couldn’t fix the problem without involv-
ing an actual person. Usually our soft-
ware could correct things and proceed,
but in this case, the best design choice
was to report failure and appeal to a
higher authority.

A t the end of the day, designers must
make intelligent choices on which
recovery actions to take and when

to give up. Not all recovery decisions
should be left to the designer’s discre-
tion. David Pye, writing for industrial
designers and building architects in
The Nature and Aesthetics of Design
(Cambien Press, 1995), cautions

The designer or his client has to
choose to what degree and where
there shall be failure. Thus the
shape of all designed things is the
product of arbitrary choice. … It
is quite impossible for any design
to be the “logical outcome of the
requirements” simply because re-
quirements being in conflict, their
logical outcome is an impossibility.

Pye’s words ring true for software
designs as well. Hopefully, we don’t
make tough design decisions in a vac-
uum. In an ideal world, determining
how to respond to failure (and how
hard to try to recover) should be a joint
decision made by both the software de-
signers and their informed customers—
not just by one or the other.

Rebecca J. Wirfs-Brock is president of Wirfs-Brock
Associates and an adjunct professor at Oregon Health & Science
University. She’s also a board member of the Agile Alliance. Con-
tact her at rebecca@wirfs-brock.com.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

